The vortex method with finite elements

Authors:
Claude Bardos, Michel Bercovier and Olivier Pironneau

Journal:
Math. Comp. **36** (1981), 119-136

MSC:
Primary 65N30; Secondary 65M25, 76C05

DOI:
https://doi.org/10.1090/S0025-5718-1981-0595046-3

MathSciNet review:
595046

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This work shows that the method of charcteristics is well suited for the numerical solution of first order hyperbolic partial differential equations whose coefficients are approximated by functions piecewise constant on a finite element triangulation of the domain of integration. We apply this method to the numerical solution of Euler's equation and prove convergence when the time step and the mesh size tend to zero. The proof is based upon the results of regularity given by Kato and Wolibner and on estimates for the solution of the Dirichlet problem given by Nitsche. The method obtained belongs to the family of vortex methods usually studied in a finite difference context.

**[1]**V. Arnold,*Problèmes Ergotiques de la Mécanique Classique*, Gauthier-Villars, Paris, 1967.**[2]**G. Baker, "The clouds and cells technique applied to the roll up of vortex sheets,"*J. Comput. Phys.*, 1979, pp. 75-95. MR**531125 (81g:76028)****[3]**C. Bardos, "Existence et unicité de la solution de l'équation d'Euler en dimension deux,"*J. Math. Anal. Appl.*, v. 40, 1972, pp. 769-790. MR**0333488 (48:11813)****[4]**Ph. Ciarlet,*The Finite Element Method for Elliptic Problems*, Studies in Math. and Its Applications, North-Holland, Amsterdam, 1978. MR**0520174 (58:25001)****[5]**A. J. Chorin, "Numerical study of slightly viscous flow,"*J. Fluid Mech.*, v. 57, 1973, pp. 784-796. MR**0395483 (52:16280)****[6]**J. P. Christiansen, "Numerical solution of hydrodynamics by the method of point vortices,"*J. Comput. Phys.*, v. 13, 1973, pp. 863-879.**[7]**B. Couet, O. Buneman & A. Leonard,*Three Dimensional Simulation of the Free Shear Layer Using the Vortex in Cell Method*(Proc. 2nd Sympos. on Turbulent Shear Flows, London, 1979).**[8]**P. Grisvard, "Behaviour of the solution of an elliptic boundary value problem in a polygonal or polyhedral domain,"*Numerical Solutions of Differential Equations*, vol. 3 (B. Hubbard, Ed.), Academic Press, New York, 1976, pp. 267-274. MR**0466912 (57:6786)****[9]**M. O. Hald, "Convergence of vortex methods for Euler's equations,"*SIAM J. Numer. Anal.*, v. 16, 1979, pp. 726-755. MR**543965 (81b:76015b)****[10]**M. O. Hald & V. Mauceri del Prete, "Convergence of vortex methods for Euler's equations,"*Math. Comp.*, v. 32, 1978, pp. 791-809. MR**492039 (81b:76015a)****[11]**T. Kato, "On the classical solution of the two dimensional nonstationary Euler equation,"*Arch. Rational Mech. Anal.*, v. 25, 1967, pp. 188-200. MR**0211057 (35:1939)****[12]**J. Nitsche, " convergence of finite element approximation,"*Mathematical Aspects of Finite Element Methods*, Springer, Berlin and New York, 1975. MR**568857 (81e:65058)****[13]**A. C. Schaeffer, "Existence theorem for the flow of an incompressible fluid in two-dimension,"*Trans. Amer. Math. Soc.*, v. 42, 1967, p. 497.**[14]**W. Wolibner, "Un théorème sur l'existence du mouvement plan d'un fluide parfait homogène et incompressible pendant un temps infiniment long,"*Math. Z.*, v. 37, 1935, pp. 727-738.**[15]**M. Zerner, "Equations d'évolution quasi-linéaire du premier ordre: Le cas lipschitzien." (À paraître.)

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
65M25,
76C05

Retrieve articles in all journals with MSC: 65N30, 65M25, 76C05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1981-0595046-3

Article copyright:
© Copyright 1981
American Mathematical Society