Approximation of the spectrum of closed operators: the determination of normal modes of a rotating basin

Authors:
Jean Descloux, Mitchell Luskin and Jacques Rappaz

Journal:
Math. Comp. **36** (1981), 137-154

MSC:
Primary 65N30; Secondary 47A10, 65J10

DOI:
https://doi.org/10.1090/S0025-5718-1981-0595047-5

MathSciNet review:
595047

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives a theory of spectral approximation for closed operators in Banach spaces. The perturbation theory developed in this paper is applied to the study of a finite element procedure for approximating the spectral properties of a differential system modeling a fluid in a rotating basin.

**[1]**J. H. Bramble & J. E. Osborn, "Rate of convergence estimates for nonselfadjoint eigenvalue approximations,"*Math. Comp.*, v. 27, 1973, pp. 525-549. MR**0366029 (51:2280)****[2]**P. G. Ciarlet,*The Finite Element Method for Elliptic Problems*, North-Holland, Amsterdam, 1978. MR**0520174 (58:25001)****[3]**J. Descloux, "Error bounds for an isolated eigenvalue obtained by the Galerkin method," Z.*Angew. Math. Phys.*, v. 30, 1979, pp. 167-176. MR**535977 (81d:65061)****[4]**J. Descloux, N. Nassif & J. Rappaz, "On spectral approximation, Part 1. The problem of convergence,"*R.A.I.R.O. Anal. Numér.*, v. 12, no. 2, 1978, pp. 97-112. MR**0483400 (58:3404a)****[5]**J. Descloux, N. Nassif & J. Rappaz, "On spectral approximation, Part 2. Error estimates for the Galerkin method,"*R.A.I.R.O. Anal. Numér.*, v. 12, no. 2, 1978, pp. 113-119. MR**0483401 (58:3404b)****[6]**T. Kato,*Perturbation Theory for Linear Operators*, Die Grundlehren der Math. Wissenschaften, Band 132, Springer-Verlag, New York, 1966. MR**0203473 (34:3324)****[7]**T. Kato, "Perturbation theory for nullity, deficiency, and other quantities of linear operators,"*J. Analyse Math.*, v. 6, 1958, pp. 261-322. MR**0107819 (21:6541)****[8]**H. Lamb,*Hydrodynamics*, 6th ed., Cambridge Univ. Press, Cambridge, 1932. MR**1317348 (96f:76001)****[9]**P. D. Lax & R. Phillips, "Local boundary conditions for dissipative symmetric differential operators,"*Comm. Pure Appl. Math.*, v. 13, 1960, pp. 427-455. MR**0118949 (22:9718)****[10]**J. L. Lions & E. Magenes,*Problèmes aux Limites Non Homogenes et Applications*, Vol. 1, Dunod, Paris, 1968. MR**0247243 (40:512)****[11]**M. Luskin, "Convergence of a finite element method for the approximation of normal modes of the oceans,"*Math. Comp.*, v. 33, 1979, pp. 493-519. MR**521272 (80i:86004)****[12]**W. Mills, Jr., "The resolvent stability condition for spectra convergence with application to the finite element approximation of noncompact operators,"*SIAM J. Numer. Anal.*, v. 16, 1979, pp. 695-703. MR**537281 (80f:65064)****[13]**W. Mills, Jr., "Optimal error estimates for the finite element spectral approximation of noncompact operators,"*SIAM J. Numer. Anal.*, v. 16, 1979, pp. 704-718. MR**537282 (80f:65065)****[14]**J. E. Osborn, "Spectral approximations for compact operators,"*Math. Comp.*, v. 29, 1975, pp. 712-725. MR**0383117 (52:3998)****[15]**G. W. Platzman, "Normal modes of the Atlantic and Indian Oceans,"*J. Phys. Oceanography*, v. 5, 1975, pp. 201-221.**[16]**F. Riesz & B. Sz.-Nagy,*Functional Analysis*, Ungar, New York, 1955. MR**0071727 (17:175i)****[17]**J. H. Wilkinson,*The Algebraic Eigenvalue Problem*, Clarendon Press, Oxford, 1965. MR**0184422 (32:1894)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
47A10,
65J10

Retrieve articles in all journals with MSC: 65N30, 47A10, 65J10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1981-0595047-5

Article copyright:
© Copyright 1981
American Mathematical Society