Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Approximation of the spectrum of closed operators: the determination of normal modes of a rotating basin


Authors: Jean Descloux, Mitchell Luskin and Jacques Rappaz
Journal: Math. Comp. 36 (1981), 137-154
MSC: Primary 65N30; Secondary 47A10, 65J10
DOI: https://doi.org/10.1090/S0025-5718-1981-0595047-5
MathSciNet review: 595047
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives a theory of spectral approximation for closed operators in Banach spaces. The perturbation theory developed in this paper is applied to the study of a finite element procedure for approximating the spectral properties of a differential system modeling a fluid in a rotating basin.


References [Enhancements On Off] (What's this?)

  • [1] J. H. Bramble & J. E. Osborn, "Rate of convergence estimates for nonselfadjoint eigenvalue approximations," Math. Comp., v. 27, 1973, pp. 525-549. MR 0366029 (51:2280)
  • [2] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [3] J. Descloux, "Error bounds for an isolated eigenvalue obtained by the Galerkin method," Z. Angew. Math. Phys., v. 30, 1979, pp. 167-176. MR 535977 (81d:65061)
  • [4] J. Descloux, N. Nassif & J. Rappaz, "On spectral approximation, Part 1. The problem of convergence," R.A.I.R.O. Anal. Numér., v. 12, no. 2, 1978, pp. 97-112. MR 0483400 (58:3404a)
  • [5] J. Descloux, N. Nassif & J. Rappaz, "On spectral approximation, Part 2. Error estimates for the Galerkin method," R.A.I.R.O. Anal. Numér., v. 12, no. 2, 1978, pp. 113-119. MR 0483401 (58:3404b)
  • [6] T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der Math. Wissenschaften, Band 132, Springer-Verlag, New York, 1966. MR 0203473 (34:3324)
  • [7] T. Kato, "Perturbation theory for nullity, deficiency, and other quantities of linear operators," J. Analyse Math., v. 6, 1958, pp. 261-322. MR 0107819 (21:6541)
  • [8] H. Lamb, Hydrodynamics, 6th ed., Cambridge Univ. Press, Cambridge, 1932. MR 1317348 (96f:76001)
  • [9] P. D. Lax & R. Phillips, "Local boundary conditions for dissipative symmetric differential operators," Comm. Pure Appl. Math., v. 13, 1960, pp. 427-455. MR 0118949 (22:9718)
  • [10] J. L. Lions & E. Magenes, Problèmes aux Limites Non Homogenes et Applications, Vol. 1, Dunod, Paris, 1968. MR 0247243 (40:512)
  • [11] M. Luskin, "Convergence of a finite element method for the approximation of normal modes of the oceans," Math. Comp., v. 33, 1979, pp. 493-519. MR 521272 (80i:86004)
  • [12] W. Mills, Jr., "The resolvent stability condition for spectra convergence with application to the finite element approximation of noncompact operators," SIAM J. Numer. Anal., v. 16, 1979, pp. 695-703. MR 537281 (80f:65064)
  • [13] W. Mills, Jr., "Optimal error estimates for the finite element spectral approximation of noncompact operators," SIAM J. Numer. Anal., v. 16, 1979, pp. 704-718. MR 537282 (80f:65065)
  • [14] J. E. Osborn, "Spectral approximations for compact operators," Math. Comp., v. 29, 1975, pp. 712-725. MR 0383117 (52:3998)
  • [15] G. W. Platzman, "Normal modes of the Atlantic and Indian Oceans," J. Phys. Oceanography, v. 5, 1975, pp. 201-221.
  • [16] F. Riesz & B. Sz.-Nagy, Functional Analysis, Ungar, New York, 1955. MR 0071727 (17:175i)
  • [17] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965. MR 0184422 (32:1894)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 47A10, 65J10

Retrieve articles in all journals with MSC: 65N30, 47A10, 65J10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1981-0595047-5
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society