Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

A new method for Chebyshev approximation of complex-valued functions


Authors: K. Glashoff and K. Roleff
Journal: Math. Comp. 36 (1981), 233-239
MSC: Primary 65D15; Secondary 30E10, 90C30
MathSciNet review: 595055
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we are concerned with a formulation of the Chebyshev approximation problem in the complex plane as a problem of linear optimization in the presence of infinitely many constraints. It is shown that there exist stable and fast algorithms for the solution of optimization problems of this type. Some numerical examples are presented.


References [Enhancements On Off] (What's this?)

  • [1] D. O. Andreassen and G. A. Watson, Linear Chebyshev approximation without Chebyshev sets, Nordisk. Tidskr. Informationsbehandling (BIT) 16 (1976), no. 4, 349–362. MR 0451625
  • [2] I. Barrodale, L. M. Delves, and J. C. Mason, Linear Chebyshev approximation of complex-valued functions, Math. Comp. 32 (1978), no. 143, 853–863. MR 0483298, 10.1090/S0025-5718-1978-0483298-X
  • [3] R. H. Bartels & G. H. Golub, "The simplex method of linear programming using LU-decompositions," Comm. ACM, v. 12, 1969, pp. 266-268.
  • [4] C. Carasso, L'Algorithme d'Echange en Optimisation Convexe, These, Grenoble, 1973.
  • [5] A. Charnes, W. W. Cooper, and K. Kortanek, Duality, Haar programs, and finite sequence spaces, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 783–786. MR 0186393
  • [6] S. Ellacott and Jack Williams, Rational Chebyshev approximation in the complex plane, SIAM J. Numer. Anal. 13 (1976), no. 3, 310–323. MR 0413449
  • [7] K. Fahlander, Computer Programs for Semi-Infinite Optimization, TRITA-NA-7312, Department of Numerical Analysis, Royal Institute of Technology, S-10044, Stockholm 70, Sweden, 1973.
  • [8] K. Glashoff & S. Å. Gustafson, Einführung in die lineare Optimierung, Wissenschaftliche Buchgesellschaft, Darmstadt, 1978.
  • [9] S.-Ȧ. Gustafson, On the computational solution of a class of generalized moment problems, SIAM J. Numer. Anal. 7 (1970), 343–357. MR 0270536
  • [10] S. Å. Gustafson, "Nonlinear system in semi-infinite programming," in Numerical Solution of Nonlinear Algebraic Systems (G. B. Byrnes & C. A. Hall, Eds.), Academic Press, New York, 1973, pp. 63-99.
  • [11] K.-H. Hoffmann and A. Klostermair, A semi-infinite linear programming procedure and applications to approximation problems in optimal control, Approximation theory, II (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1976) Academic Press, New York, 1976, pp. 379–389. MR 0434406
  • [12] W. Krabs and G. Opfer, Eine Methode zur Lösung des komplexen Approximationsproblems mit einer Anwendung auf konforme Abbildungen, Z. Angew. Math. Mech. 55 (1975), no. 4, T208–T211 (German). Vorträge der Wissenschaftlichen Jahrestagung der Gesellschaft für Angewandte Mathematik und Mechanik (Bochum, 1974). MR 0407495
  • [13] Gerhard Opfer, An algorithm for the construction of best approximations based on Kolmogorov’s criterion, J. Approx. Theory 23 (1978), no. 4, 299–317 (English, with German summary). MR 509560, 10.1016/0021-9045(78)90082-5

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D15, 30E10, 90C30

Retrieve articles in all journals with MSC: 65D15, 30E10, 90C30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1981-0595055-4
Article copyright: © Copyright 1981 American Mathematical Society