Chebyshev approximation of in

Authors:
M. M. Shepherd and J. G. Laframboise

Journal:
Math. Comp. **36** (1981), 249-253

MSC:
Primary 65D20

DOI:
https://doi.org/10.1090/S0025-5718-1981-0595058-X

MathSciNet review:
595058

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We have obtained a single Chebyshev expansion of the function in , accurate to 22 decimal digits. The presence of the factors causes to be of order unity throughout this range, ensuring that the use of for approximating erfc *x* will give uniform relative accuracy for all values of *x*

**[1]**C. Hastings, Jr.,*Approximations for Digital Computers*, Princeton Univ. Press, Princeton, N. J., 1955, p. 169. MR**0068915 (16:963e)****[2]**C. W. Clenshaw, "Chebyshev series for mathematical functions," in*National Physical Laboratory Mathematical Tables*, Vol. 5, Her Majesty's Stationery Office, London, 1962. MR**0142793 (26:362)****[3]**Y. L. Luke,*The Special Functions and their Approximations*(2 Volumes; see especially Vol. 2, pp. 323-324), Academic Press, New York, 1969.**[4]**Y. L. Luke,*Mathematical Functions and their Approximations*, Academic Press, New York, 1975, pp. 123-124. MR**0501762 (58:19039)****[5]**J. L. Schonfelder, "Chebyshev expansions for the error and related functions,"*Math. Comp.*, v. 32, 1978, pp. 1232-1240. MR**0494846 (58:13630)****[6]**K. B. Oldham, "Approximations for the function,"*Math. Comp.*, v. 22, 1968, p. 454.**[7]**G. Dahlquist & Å. Björck,*Numerical Methods*, Prentice-Hall, Englewood Cliffs, N. J., 1974, pp. 104-108. MR**0368379 (51:4620)****[8]**S.-Å. Gustavson, Private communication, 1979.**[9]**O. Perron,*Die Lehre von den Kettenbrüchen*, Band II, Teubner, Berlin, 1929, p. 103.**[10]**O. Perron,*Die Lehre von den Kettenbrüchen*, Band I, Teubner, Berlin, 1929, p. 4.**[11]**R. L. Burden, J. D. Faires & A. C. Reynolds,*Numerical Analysis*, Prindle, Weber & Schmidt, Boston, 1978, pp. 56-57. MR**0519124 (58:24827)****[12]**L. Fox & I. B. Parker,*Chebyshev Polynomials in Numerical Analysis*, Oxford Univ. Press, London and New York, 1968. MR**0228149 (37:3733)****[13]**J. L. Schonfelder, "Generation of high precision Chebyshev expansions." (In preparation.)

Retrieve articles in *Mathematics of Computation*
with MSC:
65D20

Retrieve articles in all journals with MSC: 65D20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1981-0595058-X

Article copyright:
© Copyright 1981
American Mathematical Society