One-sided difference approximations for nonlinear conservation laws

Authors:
Björn Engquist and Stanley Osher

Journal:
Math. Comp. **36** (1981), 321-351

MSC:
Primary 65M10; Secondary 35L67, 65M05

DOI:
https://doi.org/10.1090/S0025-5718-1981-0606500-X

MathSciNet review:
606500

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We analyze one-sided or upwind finite difference approximations to hyperbolic partial differential equations and, in particular, nonlinear conservation laws. Second order schemes are designed for which we prove both nonlinear stability and that the entropy condition is satisfied for limit solutions. We show that no such stable approximation of order higher than two is possible. These one-sided schemes have desirable properties for shock calculations. We show that the proper switch used to change the direction in the upwind differencing across a shock is of great importance. New and simple schemes are developed for which we prove qualitative properties such as sharp monotone shock profiles, existence, uniqueness, and stability of discrete shocks. Numerical examples are given.

**[1]**Michael G. Crandall and Andrew Majda,*Monotone difference approximations for scalar conservation laws*, Math. Comp.**34**(1980), no. 149, 1–21. MR**551288**, https://doi.org/10.1090/S0025-5718-1980-0551288-3**[2]**Germund G. Dahlquist,*A special stability problem for linear multistep methods*, Nordisk Tidskr. Informations-Behandling**3**(1963), 27–43. MR**0170477****[3]**Germund Dahlquist,*Positive functions and some applications to stability questions for numerical methods*, Recent advances in numerical analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1978) Publ. Math. Res. Center Univ. Wisconsin, vol. 41, Academic Press, New York-London, 1978, pp. 1–29. MR**519054****[4]**Björn Engquist and Stanley Osher,*Stable and entropy satisfying approximations for transonic flow calculations*, Math. Comp.**34**(1980), no. 149, 45–75. MR**551290**, https://doi.org/10.1090/S0025-5718-1980-0551290-1**[5]**Amiram Harten,*The artificial compression method for computation of shocks and contact discontinuities. I. Single conservation laws*, Comm. Pure Appl. Math.**30**(1977), no. 5, 611–638. MR**0438730**, https://doi.org/10.1002/cpa.3160300506**[6]**A. Harten, J. M. Hyman, and P. D. Lax,*On finite-difference approximations and entropy conditions for shocks*, Comm. Pure Appl. Math.**29**(1976), no. 3, 297–322. With an appendix by B. Keyfitz. MR**0413526**, https://doi.org/10.1002/cpa.3160290305**[7]**Antony Jameson,*Numerical solution of nonlinear partial differential equations of mixed type*, Numerical solution of partial differential equations, III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975) Academic Press, New York, 1976, pp. 275–320. MR**0468255****[8]**Gray Jennings,*Discrete shocks*, Comm. Pure Appl. Math.**27**(1974), 25–37. MR**0338594**, https://doi.org/10.1002/cpa.3160270103**[9]**J. A. Krupp & J. D. Cole,*Studies in Transonic Flow*IV,*Unsteady Transonic Flow*, UCLA Eng. Dept. Rep., 76/04, 1976.**[10]**Peter Lax,*Shock waves and entropy*, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971) Academic Press, New York, 1971, pp. 603–634. MR**0393870****[11]**Peter Lax and Burton Wendroff,*Systems of conservation laws*, Comm. Pure Appl. Math.**13**(1960), 217–237. MR**0120774**, https://doi.org/10.1002/cpa.3160130205**[12]**E. M. Murman & J. D. Cole, "Calculations of steady transonic flows,"*AIAA J.*, v. 9, 1971, pp. 114-121.**[13]**Patrick J. Roache,*Computational fluid dynamics*, Hermosa Publishers, Albuquerque, N.M., 1976. With an appendix (“On artificial viscosity”) reprinted from J. Computational Phys. 10 (1972), no. 2, 169–184; Revised printing. MR**0411358****[14]**Joseph L. Steger,*Coefficient matrices for implicit finite difference solution of the inviscid fluid conservation law equations*, Comput. Methods Appl. Mech. Engrg.**13**(1978), no. 2, 175–188. MR**497272**, https://doi.org/10.1016/0045-7825(78)90056-7**[15]**Gilbert Strang,*Accurate partial difference methods. II. Non-linear problems*, Numer. Math.**6**(1964), 37–46. MR**0166942**, https://doi.org/10.1007/BF01386051**[16]**B. van Leer, "Towards the ultimate conservative difference scheme III-Upstream-centered finite-difference schemes for ideal compressible flow,"*J. Comput. Phys.*, v. 3, 1977, pp. 263-275.**[17]**B. van Leer, "Towards the ultimate conservative difference scheme IV; A new approach to numerical convection,"*J. Comput. Phys.*, v. 23, 1977, pp. 276-299.**[18]**R. F. Warming and Richard M. Beam,*Upwind second-order difference schemes and applications in aerodynamic flows*, AIAA J.**14**(1976), no. 9, 1241–1249. MR**0459301**, https://doi.org/10.2514/3.61457**[19]**R. F. Warming and Richard M. Beam,*On the construction and application of implicit factored schemes for conservation laws*, Computational fluid dynamics (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1977) Amer. Math. Soc., Providence, R.I., 1978, pp. 85–129. SIAM-AMS Proc., Vol. XI. MR**0520170**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10,
35L67,
65M05

Retrieve articles in all journals with MSC: 65M10, 35L67, 65M05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1981-0606500-X

Article copyright:
© Copyright 1981
American Mathematical Society