Quadrature methods for integral equations of the second kind over infinite intervals

Author:
Ian H. Sloan

Journal:
Math. Comp. **36** (1981), 511-523

MSC:
Primary 65R20; Secondary 45B05

DOI:
https://doi.org/10.1090/S0025-5718-1981-0606510-2

MathSciNet review:
606510

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Convergence results are proved for a class of quadrature methods for integral equations of the form . An important special case is the Nyström method, in which the integral term is approximated by an ordinary quadrature rule. For all of the methods considered here, the rate of convergence is the same, apart from a constant factor, as that of the quadrature approximation to the integral term.

**[1]**Philip M. Anselone,*Collectively compact operator approximation theory and applications to integral equations*, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1971. With an appendix by Joel Davis; Prentice-Hall Series in Automatic Computation. MR**0443383****[2]**Kendall Atkinson,*The numerical solution of integral equations on the half-line*, SIAM J. Numer. Anal.**6**(1969), 375–397. MR**0253579**, https://doi.org/10.1137/0706035**[3]**Christopher T. H. Baker,*The numerical treatment of integral equations*, Clarendon Press, Oxford, 1977. Monographs on Numerical Analysis. MR**0467215****[4]**Constantin Corduneanu,*Integral equations and stability of feedback systems*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1973. Mathematics in Science and Engineering, Vol. 104. MR**0358245****[5]**Philip J. Davis and Philip Rabinowitz,*Methods of numerical integration*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers] New York-London, 1975. Computer Science and Applied Mathematics. MR**0448814****[6]**E. J. Nyström,*Über Die Praktische Auflösung von Integralgleichungen mit Anwendungen auf Randwertaufgaben*, Acta Math.**54**(1930), no. 1, 185–204 (German). MR**1555306**, https://doi.org/10.1007/BF02547521**[7]**J. D. Pryce,*Basic methods of linear functional analysis*, Hutchinson & Co., Ltd., London, 1973. Hutchinson University Library. MR**0358267****[8]**Philip Rabinowitz,*Gaussian integration in the presence of a singularity*, SIAM J. Numer. Anal.**4**(1967), 191–201. MR**0213016**, https://doi.org/10.1137/0704018**[9]**Ian H. Sloan,*On choosing the points in product integration*, J. Math. Phys.**21**(1980), no. 5, 1032–1039. MR**574876**, https://doi.org/10.1063/1.524552**[10]**I. H. Sloan, "Analysis of general quadrature methods for integral equations of the second kind." (Submitted for publication.)**[11]**William E. Smith and Ian H. Sloan,*Product-integration rules based on the zeros of Jacobi polynomials*, SIAM J. Numer. Anal.**17**(1980), no. 1, 1–13. MR**559455**, https://doi.org/10.1137/0717001**[12]**J. V. Uspensky,*On the convergence of quadrature formulas related to an infinite interval*, Trans. Amer. Math. Soc.**30**(1928), no. 3, 542–559. MR**1501444**, https://doi.org/10.1090/S0002-9947-1928-1501444-8

Retrieve articles in *Mathematics of Computation*
with MSC:
65R20,
45B05

Retrieve articles in all journals with MSC: 65R20, 45B05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1981-0606510-2

Keywords:
Integral equation,
Fredholm equation,
equation of the second kind,
infinite interval,
Nyström method,
quadrature method

Article copyright:
© Copyright 1981
American Mathematical Society