Minimal solutions of three-term recurrence relations and orthogonal polynomials

Author:
Walter Gautschi

Journal:
Math. Comp. **36** (1981), 547-554

MSC:
Primary 33A65; Secondary 65D20, 65D30

DOI:
https://doi.org/10.1090/S0025-5718-1981-0606512-6

MathSciNet review:
606512

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We observe that the well-known recurrence relation for orthogonal polynomials admits a "minimal solution" if *z* is outside the spectrum of the mass distribution with respect to which the polynomials are orthogonal and if the moment problem for this distribution is determined. The minimal solution, indeed is , and can be computed accurately by means of the author's continued fraction algorithm. An application is made to special Gauss-type quadrature formulas.

**[1]**British Association for the Advancement of Science,*Mathematical Tables*, vol. X,*Bessel Functions*, Part II,*Functions of Positive Integer Order*, Cambridge Univ. Press, Cambridge, 1952. MR**0050973 (14:410d)****[2]**J. R. Cash, "An extension of Olver's method for the numerical solution of linear recurrence relations,"*Math. Comp.*, v. 32, 1978, pp. 497-510. MR**0483578 (58:3570)****[3]**J. R. Cash, "A note on Olver's algorithm for the solution of second-order linear difference equations,"*Math. Comp.*, v. 35, 1980, pp. 767-772. MR**572854 (81h:65124)****[4]**P. J. Davis,*Interpolation and Approximation*, Blaisdell, New York, 1963. MR**0157156 (28:393)****[5]**P. Deuflhard, "A summation technique for minimal solutions of linear homogeneous difference equations,"*Computing*, v. 18, 1977, pp. 1-13. MR**0433927 (55:6897)****[6]**J. D. Donaldson & D. Elliott, "A unified approach to quadrature rules with asymptotic estimates of their remainders,"*SIAM J. Numer. Anal.*, v. 9, 1972, pp. 573-602. MR**0317522 (47:6069)****[7]**W. Gautschi, "Computational aspects of three-term recurrence relations,"*SIAM Rev.*, v. 9, 1967, pp. 24-82. MR**0213062 (35:3927)****[8]**W. Gautschi, "Questions of numerical condition related to polynomials," in*Recent Advances in Numerical Analysis*(C. de Boor and G. H. Golub, Eds.), Academic Press, New York, 1978, pp. 45-72. MR**519056 (80b:65035)****[9]**W. Gautschi, "On generating Gaussian quadrature rules," in*Numerische Integration*, ISNM Vol. 45 (G. Hämmerlin, Ed.), Birkhäuser Verlag, Basel, 1979, pp. 147-154. MR**561288 (81m:65032)****[10]**G. H. Golub & J. H. Welsch, "Calculation of Gauss quadrature rules,"*Math. Comp.*, v. 23, 1969, pp. 221-230. MR**0245201 (39:6513)****[11]**R. Kumar, "A class of quadrature formulas,"*Math. Comp.*, v. 28, 1974, pp. 769-778. MR**0373240 (51:9441)****[12]**R. Kumar, "Certain Gaussian quadratures,"*J. Inst. Math. Appl.*, v. 14, 1974, pp. 175-182. MR**0356452 (50:8922)****[13]**D. W. Lozier & J. M. Smith, "Algorithm 567-Extended-range arithmetic and normalized Legendre polynomials,"*ACM Trans. Math. Software*, v. 7, 1981. (To appear.) MR**607353 (83a:65017)****[14]**R. M. M. Mattheij & A. van der Sluis, "Error estimates for Miller's algorithm,"*Numer. Math.*, v. 26, 1976, pp. 61-78. MR**0438745 (55:11652)****[15]**F. W. J. Olver, "Bessel functions of integer order,"*Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*(M. Abramowitz and I. A. Stegun, Eds.), Nat. Bur. Standards, Appl. Math. Ser., no. 55, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964, pp. 355-433. MR**0208798 (34:8607)****[16]**F. W. J. Olver, "Numerical solution of second-order linear difference equations,"*J. Res. Nat. Bur. Standards*, v. 71B, 1967, pp. 111-129. MR**0221789 (36:4841)****[17]**F. W. J. Olver & D. J. Sookne, "Note on backward recurrence algorithms,"*Math. Comp.*, v. 26, 1972, pp. 941-947. MR**0331826 (48:10158)****[18]**O. Perron,*Die Lehre von den Kettenbrüchen*, Vol. II, Teubner Verlag, Stuttgart, 1957. MR**0085349 (19:25c)****[19]**T. E. Price, Jr., "Orthogonal polynomials for nonclassical weight functions,"*SIAM J. Numer. Anal.*, v. 16, 1979, pp. 999-1006. MR**551321 (80j:42042)****[20]**J. A. Shohat & J. D. Tamarkin,*The Problem of Moments*, Math. Surveys, No. I, Amer. Math. Soc., Providence, R.I., 1943. MR**0008438 (5:5c)****[21]**J. M. Smith, F. W. J. Olver & D. W. Lozier, "Extended-range arithmetic and normalized Legendre polynomials,"*ACM Trans. Math. Software*, v. 7, 1981.(To appear.) MR**607353 (83a:65017)****[22]**H. C. Thacher, Jr., "Series solutions to differential equations by backward recurrence,"*Proc. IFIP Congress*71, Vol. 2, North-Holland, Amsterdam, 1972, pp. 1287-1291. MR**0461923 (57:1905)****[23]**H. C. Thacher, Jr., "New backward recurrences for Bessel functions,"*Math. Comp.*, v. 33, 1979, pp. 744-764. MR**521289 (81b:65019)****[24]**P. van der Cruyssen, "A reformulation of Olver's algorithm for the numerical solution of second-order linear difference equations,"*Numer. Math.*, v. 32, 1979, pp. 159-166. MR**529906 (80c:65241)****[25]**P. van der Cruyssen, "Linear difference equations and generalized continued fractions,"*Computing*, v. 22, 1979, pp. 269-278. MR**620219 (82e:65129)****[26]**R. V. M. Zahar, "A mathematical analysis of Miller's algorithm,"*Numer. Math.*, v. 27, 1977, pp. 427-447.

Retrieve articles in *Mathematics of Computation*
with MSC:
33A65,
65D20,
65D30

Retrieve articles in all journals with MSC: 33A65, 65D20, 65D30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1981-0606512-6

Keywords:
Minimal solutions of three-term recurrence relations,
orthogonal polynomials,
moment problem,
modified moments

Article copyright:
© Copyright 1981
American Mathematical Society