The JacobiPerron algorithm in integer form
Authors:
M. D. Hendy and N. S. Jeans
Journal:
Math. Comp. 36 (1981), 565574
MSC:
Primary 10A30; Secondary 12A45
MathSciNet review:
606514
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We present an alternative expression of the JacobiPerron algorithm on a set of independent numbers of an algebraic number field of degree n, where computation of real valued (nonrational) numbers is avoided. In some instances this saves the need to compute with high levels of precision. We also demonstrate a necessary and sufficient condition for the algorithm to cycle. The paper is accompanied by several numerical examples.
 [1]
William
W. Adams, On a relationship between the
convergents of the nearest integer and regular continued
fractions, Math. Comp. 33
(1979), no. 148, 1321–1331.
MR 537978
(82g:10078), http://dx.doi.org/10.1090/S00255718197905379789
 [2]
Leon
Bernstein, The JacobiPerron algorithm—Its theory and
application, Lecture Notes in Mathematics, Vol. 207, SpringerVerlag,
BerlinNew York, 1971. MR 0285478
(44 #2696)
 [3]
Leon
Bernstein, A 3dimensional periodic JacobiPerron algorithm of
period length 8, J. Number Theory 4 (1972),
48–69. MR
0294259 (45 #3328)
 [4]
G. Chrystal, Algebra, Part II, 2nd ed., A. and C. Black Ltd., London, 1931.
 [5]
M.
D. Hendy, Applications of a continued fraction
algorithm to some class number problems, Math.
Comp. 28 (1974),
267–277. MR 0330102
(48 #8440), http://dx.doi.org/10.1090/S00255718197403301022
 [6]
N.
S. Jeans and M.
D. Hendy, Determining the fundamental unit of a
pure cubic field given any unit, Math.
Comp. 32 (1978), no. 143, 925–935. MR 0472761
(57 #12451), http://dx.doi.org/10.1090/S00255718197804727613
 [7]
Oskar
Perron, Der Jacobi’sche Kettenalgorithmus in einem kubischen
Zahlenkörper, Bayer. Akad. Wiss. Math.Natur. Kl. S.B. (1971),
13–49 (1972) (German). MR 0556654
(58 #27725a)
 [8]
H.
M. Stark, An explanation of some exotic continued fractions found
by Brillhart, Computers in number theory (Proc. Sci. Res. Council
Atlas Sympos. No. 2, Oxford, 1969) Academic Press, London, 1971,
pp. 21–35. MR 0337801
(49 #2570)
 [9]
Hideo
Wada, A table of fundamental units of purely cubic fields,
Proc. Japan Acad. 46 (1970), 1135–1140. MR 0294292
(45 #3361)
 [10]
H.
C. Williams and P.
A. Buhr, Calculation of the regulator of
𝑄(√𝐷) by use of the nearest integer continued
fraction algorithm, Math. Comp.
33 (1979), no. 145, 369–381. MR 514833
(80e:12003), http://dx.doi.org/10.1090/S00255718197905148331
 [1]
 William W. Adams, "On a relationship between the convergents of the nearest integer and regular continued fractions," Math. Comp., v. 33, 1979, pp. 13211331. MR 537978 (82g:10078)
 [2]
 Leon Bernstein, The JacobiPerron Algorithm: Its Theory and Applications, Lecture Notes in Math., Vol. 207, SpringerVerlag, New York, 1971. MR 0285478 (44:2696)
 [3]
 Leon Bernstein, "A 3dimensional periodic JacobiPerron Algorithm of length 8," J. Number Theory, v. 4, 1972, pp. 4861. MR 0294259 (45:3328)
 [4]
 G. Chrystal, Algebra, Part II, 2nd ed., A. and C. Black Ltd., London, 1931.
 [5]
 M. D. Hendy, "Applications of a continued fraction algorithm to some class number problems," Math, Comp., v. 28, 1974, pp. 267277. MR 0330102 (48:8440)
 [6]
 N. S. Jeans & M. D. Hendy, "Determining the fundamental unit of a pure cubic field given any unit," Math Comp., v. 32, 1978, pp. 925935. MR 0472761 (57:12451)
 [7]
 O. Perron, "Der Jacobische Kettenalgorithmns in einem Kubischen Zahlenkörper," Bayer. Akad. Wiss. Math.Natur. Kl. Abh., 1971, pp. 1349. MR 0556654 (58:27725a)
 [8]
 H. M. Stark, "An explanation of some exotic continued fractions found by Brillhart," Computers in Number Theory (A. O. L. Atkin & B. J. Birch, Eds.), Academic Press, London, 1971, pp. 2135. MR 0337801 (49:2570)
 [9]
 Hideo Wada, "A table of fundamental units of purely cubic fields," Proc. Japan Acad., v. 46, 1970, pp. 11351140. MR 0294292 (45:3361)
 [10]
 H. Williams & P. Buhr, "Calculations of the regulator of by use of the nearest integer continued fraction algorithm," Math Comp., v. 33, 1979, pp. 369381. MR 514833 (80e:12003)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
10A30,
12A45
Retrieve articles in all journals
with MSC:
10A30,
12A45
Additional Information
DOI:
http://dx.doi.org/10.1090/S0025571819810606514X
PII:
S 00255718(1981)0606514X
Keywords:
JacobiPerron algorithm,
multiprecision arithmetic,
continued fractions,
fundamental unit,
cubic fields
Article copyright:
© Copyright 1981
American Mathematical Society
