On Odd Perfect, Quasiperfect, and Odd Almost Perfect Numbers

By Masao Kishore

Abstract. We establish upper bounds for the six smallest prime factors of odd perfect, quasiperfect, and odd almost perfect numbers.

1. Suppose \(N = \prod_{i=1}^{r} p_i^{a_i} \) is an odd perfect (OP) number, i.e. \(\sigma(N) = 2N \), where \(p_i \)'s are odd primes, \(p_1 < \cdots < p_r \), and \(a_i \)'s are positive integers. Grun [1] proved that
\[
p_1 < 2 + 2r/3,
\]
and Pomerance [5] proved that
\[
(1) \quad p_i < (4r)^{2r(1+1)/2} \quad \text{for} \quad 1 < i < r.
\]
In [3] we showed that if \(N \) is an odd integer and the number \(\omega(N) \) of distinct prime factors of \(N \) is 5, then
\[
(2) \quad |2 - \sigma(N)/N| > 10^{-14}.
\]
From this it follows immediately that if \(M \) is an odd integer, \(\sigma(M) = 2M + L \), and if \(|L/M| < 10^{-14} \), then \(\omega(M) > 6 \). OP, quasiperfect (QP) numbers, i.e. \(\sigma(N) = 2N + 1 \), and odd almost perfect (OAP) numbers, i.e. \(\sigma(N) = 2N - 1 \), are such examples.

Also, it can be proved from (2) that if \(M = \prod_{i=1}^{r} p_i^{a_i} \) is OP,
\[
p_6 < 2 \cdot 10^{14}(r - 5).
\]
However, if we consider only those \(N = \prod_{i=1}^{r} p_i^{a_i} \) in (2) for which \(\prod_{i=1}^{r} p_i^{a_i} \) is OP, then exponents \(a_i \) are restricted, and hence we have a better lower bound in (2). Consequently we have a better upper bound for \(p_6 \).

In this paper we prove

THEOREM. Suppose \(M = \prod_{i=1}^{r} p_i^{a_i} \). If \(M \) is OP or QP,
\[
p_i < 2^{2^i - 1}(r - i + 1) \quad \text{for} \quad 2 < i < 6.
\]
If \(M \) is OAP,
\[
p_i < 2^{2^i - 1}(r - i + 1) \quad \text{for} \quad 2 < i < 5, \quad \text{and}
\]
\[
p_6 < 23775427335(r - 5).
\]
Although our Theorem gives upper bounds for \(p_i \) only for \(2 < i < 6 \), they are better than (1). For example, if \(M \) is OP, then \(p_5 < 65536(r - 4) \) by our Theorem.

Received January 21, 1980; revised July 28, 1980.
1980 Mathematics Subject Classification. Primary 10A20.

© 1981 American Mathematical Society
0025-5718/81/0000-0066/$02.00

583
and \(p_r > 100110 \) by Hargis and McDaniel [2]. Hence, we have another proof that \(\omega(M) > 6 \).

2. In order to prove our Theorem, we need three lemmas.

Definition. \(S(N) = \sigma(N)/N \).

Lemma 1. Suppose \(M = \prod_{i=1}^{r} p_i^{a_i} \) is OP. Then

\[
S\left(\prod_{i=1}^{5} p_i^{a_i} \right) < \frac{3}{2} \frac{5}{4} \frac{17}{16} \frac{257}{256} \frac{65537}{65536} = \alpha \approx 2 - 4/10^{10}.
\]

Proof. Since \(M \) is OP, by Euler,

(3) \(\text{if } p_i \equiv 1 \ (4), \ a_i \equiv 0, 1, 2 \ (4), \ \text{and if } p_i \equiv 3 \ (4), \ a_i \equiv 0 \ (2), \) and if \(q \) is an odd prime factor of \(\sigma(p_i^{a_i}) \) for some \(i \), then \(q \mid M \). Suppose

(4)

\[\alpha < S\left(\prod_{i=1}^{5} p_i^{a_i} \right) < 2, \]

and \(q \neq p_i \) for \(1 < i < 5 \). If \(q < 10^9 \), then

\[
\log 2 = \log S(M) > \log S\left(\prod_{i=1}^{5} p_i^{a_i} \right) + \sum_{i=6}^{r} \log S(p_i^{a_i})
\]

\[> \log \alpha + \log(q + 1)/q > \log \alpha + \log(10^9 + 1)/10^9 > \log 2, \]

a contradiction. Hence,

(5) \(\text{If } q \) is an odd prime factor of \(\sigma(p_i^{a_i}) \) for some \(i \) and \(q \neq p_j \) for \(1 < j < 5 \), then \(q > 10^9 \).

As in [3], we used a computer (PDP11 at the University of Toledo) to find odd integers \(\prod_{i=1}^{r} p_i^{a_i} \) satisfying (3) and (4). There were infinitely many such \(\prod_{i=1}^{5} p_i^{a_i} \). (However, there were finitely many (just over one hundred) \(\prod_{i=1}^{5} p_i^{a_i} \) if \(a_i < a(p_i) \) where

\[a(p_i) = \min\{ a_i | a_i \text{ satisfies (3) and } p_i^{a_i+1} > 10^{11}\}. \]

See [3].) In every case such \(\prod_{i=1}^{5} p_i^{a_i} \) had a component \(p_i^{a_i} \) such that \(a_i < a(p_i) \), \(q \) is an odd prime factor of \(\sigma(p_i^{a_i}) \), \(q \neq p_j \) for \(1 < j < 5 \) and \(q < 10^9 \), contradicting (5).

Q.E.D.

Lemma 2. Suppose \(M = \prod_{i=1}^{r} p_i^{a_i} \) is QP. Then

\[
S\left(\prod_{i=1}^{5} p_i^{a_i} \right) < \frac{3}{2} \frac{5}{4} \frac{17}{16} \frac{257}{256} \frac{65537}{65536} = \alpha \approx 2 - 4/10^{10}.
\]

Proof. Since \(M \) is QP, by [3], \(r > 6 \), \(S(\prod_{i=1}^{5} p_i^{a_i}) < 2, \) and

\[a_i \equiv 0 \ (2) \text{ for any } i, \]

(6)

if \(p_i = 3, a_i = 4, 12 \text{ or } > 24, \)

if \(p_i = 5, a_i = 6 \text{ or } > 16, \)

if \(p_i = 17, a_i = 2 \text{ or } > 8. \)
We used the computer to find odd integers $\prod_{i=1}^{5} p_i^{a_i}$ satisfying (6) and

$$\alpha < S\left(\prod_{i=1}^{5} p_i^{a_i}\right) < 2,$$

but there were none. Q.E.D.

Lemma 3. Suppose $M = \prod_{i=1}^{5} p_i^{a_i}$ is OAP. Then

$$S\left(\prod_{i=1}^{5} p_i^{a_i}\right) < S\left(3^{12}\right) \frac{5}{4} S(17^{6}) \frac{257}{256} \frac{62939}{62938} = \beta \approx 2 - 8/10^{11}.$$

Proof. Since M is OAP, by [3], $r > 6$ and

$$a_i \equiv 0 \pmod{2} \text{ for all } i,$$

if $p_i = 3$, $a_i = 12, 16$ or > 24,

if $p_i = 5$, $a_i = 2, 10$ or > 16,

if $p_i = 257$, $a_i > 16$.

We used the computer to find odd integers $\prod_{i=1}^{5} p_i^{a_i}$ satisfying (7) and

$$\alpha < S\left(\prod_{i=1}^{5} p_i^{a_i}\right) < 2,$$

and the results were

$3^{a_1} 5^{a_2} 17^{a_3} 257^{a_4} 65449^{a_5}$, where $a_1 > 24, a_3 > 8, a_4 > 16, a_5 > 2$, and

$3^{12} 5^{a_2} 17^{6} 257^{a_4} 62939^{a_5}$, where $a_2 > 16, a_4 > 16, a_5 > 2$.

Since

$$\frac{3}{2} S(5^{10}) \frac{17}{16} \frac{257}{256} \frac{65449}{65448} < S\left(3^{12}\right) \frac{5}{4} S(17^{6}) \frac{257}{256} \frac{62939}{62938} = \beta,$$

Lemma 3 follows. Q.E.D.

Proof of Theorem. We prove only the case $i = 5$. Suppose $M = \prod_{i=1}^{5} p_i^{a_i}$ is OP or QP, $N = \prod_{i=1}^{5} p_i^{a_i}$, and

$$\frac{2}{2 - \alpha} (r - 5) + 1 < p_6 < \cdots < p_r.$$

Since $\log(1 + x) < x$ and $\log(1 - x) < -x$ if $0 < x < 1$, we have, by Lemmas 1 and 2,

$$\log 2 < \log S(M) = \log S(N) + \sum_{i=6}^{r} \log S(p_i^{a_i})$$

$$< \log \alpha + (r - 5) \log S(p_6^{a_6})$$

$$< \log 2 + \log \alpha/2 + (r - 5) \log p_6/ (p_6 - 1)$$

$$= \log 2 + \log(1 - (2 - \alpha)/2) + (r - 5) \log(1 + 1/ (p_6 - 1))$$

$$< \log 2 - (2 - \alpha)/2 + (r - 5)/ (p_6 - 1)$$

$$< \log 2 - (2 - \alpha)/2 + (2 - \alpha)/2 = \log 2,$$

a contradiction. Hence,

$$p_6 < \frac{2}{2 - \alpha} (r - 5) + 1 = 2^2(r - 5) + 1.$$

Since p_6 is a prime, $p_6 < 2^2(r - 5)$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Suppose \(M = \prod_{i=1}^{r} p_i^a \) is OAP, \(N = \prod_{i=1}^{s} p_i^a \), and
\[
\frac{2}{2 - \beta} (r - 5) + 1 < p_6 < \cdots < p_r.
\]
Since \(M > 10^{30} \) by [4] and \(\log(1 - x) < -x - x^2/2 \) if \(0 < x < 1 \), we have, by Lemma 3,
\[
\log 2 - \frac{1}{2} \cdot 10^{30} \approx \log 2 + \log\left(1 - \frac{1}{2} \cdot 10^{30}\right)
= \log(2 - 1/10^{30}) < \log(2 - 1/M) = \log(S(M)/M)
= \log S(N) + \sum_{i=6}^{r} \log p_i^a < \log \beta + (r - 5) \log p_6 / (p_6 - 1)
< \log 2 + \log(1 - (2 - \beta)/2) + (r - 5)/(p_6 - 1)
< \log 2 - (2 - \beta)/2 - (2 - \beta)^2/8 + (2 - \beta)/2
= \log 2 - (2 - \beta)^2/8 \approx \log 2 - 9 \cdot 10^{-22},
\]
a contradiction. Hence
\[
p_6 < \frac{2}{2 - \beta} (r - 5) + 1 < 23775427335(r - 5) + 1.
\]
Since \(p_6 \) is a prime, \(p_6 < 23775427335(r - 5) \). Q.E.D.

Finally, we (re)state the following

Theorem. Suppose \(N = \prod_{i=1}^{r} p_i^a \) is an integer.

(a) If \(r = 5 \), \(|2 - S(N)| > 2 - S(3756172233) \cdot 36550429/36550428 > 10^{-14} \).

(b) If \(r = 4 \), \(|2 - S(N)| > 2 - S(3756172233) > 5/10^8 \).

(c) If \(r = 3 \), \(|2 - S(N)| > S(355213) - 2 > 3/10^4 \).

(d) If \(r = 2 \), \(|2 - S(N)| > 2 - \frac{3}{2} \cdot \frac{5}{4} = 0.125 \).

(e) If \(r = 1 \), \(|2 - S(N)| > 2 - \frac{3}{2} = 0.5 \).

Mathematics Department
University of Toledo
Toledo, Ohio 43606

4. M. Kishore, *The Number of Distinct Prime Factors of \(N \) for Which \(\sigma(N) = 2N, \sigma(N) = 2N \pm 1, \) and \(\phi(N)/N - 1 \),* Doctoral dissertation, Princeton University, Princeton, N. J., 1977.