On Odd Perfect, Quasiperfect, and Odd Almost Perfect Numbers

By Masao Kishore

Abstract. We establish upper bounds for the six smallest prime factors of odd perfect, quasiperfect, and odd almost perfect numbers.

1. Suppose \(N = \prod_{i=1}^{r} p_i^{a_i} \) is an odd perfect (OP) number, i.e. \(\sigma(N) = 2N \), where \(p_i \)'s are odd primes, \(p_1 < \cdots < p_r \), and \(a_i \)'s are positive integers. Grun [1] proved that

\[p_1 < 2 + 2r/3, \]

and Pomerance [5] proved that

\[p_i < (4r)^{2(r+1)/2} \quad \text{for} \quad 1 < i < r. \]

In [3] we showed that if \(N \) is an odd integer and the number \(\omega(N) \) of distinct prime factors of \(N \) is 5, then

\[|2 - \sigma(N)/N| > 10^{-14}. \]

From this it follows immediately that if \(M \) is an odd integer, \(\sigma(M) = 2M + L \), and if \(|L/M| < 10^{-14} \), then \(\omega(M) > 6 \). OP, quasiperfect (QP) numbers, i.e. \(\sigma(N) = 2N + 1 \), and odd almost perfect (OAP) numbers, i.e. \(\sigma(N) = 2N - 1 \), are such examples.

Also, it can be proved from (2) that if \(M = \prod_{i=1}^{r} p_i^{a_i} \) is OP,

\[p_6 < 2 \cdot 10^{14}(r - 5). \]

However, if we consider only those \(N = \prod_{i=1}^{r} p_i^{a_i} \) in (2) for which \(\prod_{i=1}^{r} p_i^{a_i} \) is OP, then exponents \(a_i \) are restricted, and hence we have a better lower bound in (2). Consequently we have a better upper bound for \(p_6 \).

In this paper we prove

Theorem. Suppose \(M = \prod_{i=1}^{r} p_i^{a_i} \). If \(M \) is OP or QP,

\[p_i < 2^{2^{i-1}}(r - i + 1) \quad \text{for} \quad 2 < i < 6. \]

If \(M \) is OAP,

\[p_i < 2^{2^{i-1}}(r - i + 1) \quad \text{for} \quad 2 < i < 5, \quad \text{and} \]

\[p_6 < 23775427335(r - 5). \]

Although our Theorem gives upper bounds for \(p_i \) only for \(2 < i < 6 \), they are better than (1). For example, if \(M \) is OP, then \(p_5 < 65536(r - 4) \) by our Theorem.
and \(p_r > 100110 \) by Hargis and McDaniel [2]. Hence, we have another proof that \(\omega(M) > 6 \).

2. In order to prove our Theorem, we need three lemmas.

Definition. \(S(N) = \sigma(N)/N \).

Lemma 1. Suppose \(M = \prod_{i=1}^{r} p_i^{a_i} \) is OP. Then
\[
S\left(\prod_{i=1}^{5} p_i^{a_i} \right) < \frac{3}{2} \frac{5}{4} \frac{17}{16} 257 \frac{65537}{256} \frac{65536}{65536} = \alpha \approx 2 - 4/10^6.
\]

Proof. Since \(M \) is OP, by Euler,
\[
(3) \quad \text{if } p_i \equiv 1 \pmod{4}, \quad a_i \equiv 0, 1, 2 \pmod{4}, \quad \text{and if } \quad p_i \equiv 3 \pmod{4}, \quad a_i \equiv 0 \pmod{2},
\]
and if \(q \) is an odd prime factor of \(\sigma(p_i^{a_i}) \) for some \(i \), then \(q \mid M \). Suppose
\[
(4) \quad \alpha < S\left(\prod_{i=1}^{5} p_i^{a_i} \right) < 2,
\]
and \(q \neq p_i \) for \(1 < i < 5 \). If \(q < 10^9 \), then
\[
\log 2 = \log S(M) > \log S\left(\prod_{i=1}^{5} p_i^{a_i} \right) + \sum_{i=6}^{r} \log S(p_i^{a_i}) > \log \alpha + \log(q + 1)/q > \log \alpha + \log(10^9 + 1)/10^9 > \log 2,
\]
a contradiction. Hence,
\[
(5) \quad \text{If } q \text{ is an odd prime factor of } \sigma(p_i^{a_i}) \text{ for some } i \text{ and } q \neq p_j \text{ for } 1 < j < 5, \text{ then } q > 10^9.
\]

As in [3], we used a computer (PDP11 at the University of Toledo) to find odd integers \(\prod_{i=1}^{5} p_i^{a_i} \) satisfying (3) and (4). There were infinitely many such \(\prod_{i=1}^{5} p_i^{a_i} \). (However, there were finitely many (just over one hundred) \(\prod_{i=1}^{5} p_i^{a_i} \) if \(a_i < a(p_i) \) where
\[
a(p_i) = \min\{a_i \mid a_i \text{ satisfies (3) and } p_i^{a_{i+1}} > 10^{11}\}.
\]
See [3].) In every case such \(\prod_{i=1}^{5} p_i^{a_i} \) had a component \(p_i^{a_i} \) such that \(a_i < a(p_i) \), \(q \) is an odd prime factor of \(\sigma(p_i^{a_i}) \), \(q \neq p_j \) for \(1 < j < 5 \) and \(q < 10^9 \), contradicting (5). Q.E.D.

Lemma 2. Suppose \(M = \prod_{i=1}^{r} p_i^{a_i} \) is QP. Then
\[
S\left(\prod_{i=1}^{5} p_i^{a_i} \right) < \frac{3}{2} \frac{5}{4} \frac{17}{16} 257 \frac{65537}{256} \frac{65536}{65536} = \alpha \approx 2 - 4/10^6.
\]

Proof. Since \(M \) is QP, by [3], \(r > 6 \), \(S(\prod_{i=1}^{5} p_i^{a_i}) < 2 \), and
\[
(6) \quad a_i \equiv 0 \pmod{2} \text{ for any } i,
\]
if \(p_i = 3, a_i = 4, 12 \text{ or } > 24, \)
if \(p_i = 5, a_i = 6 \text{ or } > 16, \)
if \(p_i = 17, a_i = 2 \text{ or } > 8. \)
We used the computer to find odd integers \(\prod_{i=1}^{5} p_i^{a_i} \) satisfying (6) and
\[
\alpha < \frac{S}{\prod_{i=1}^{5} p_i^{a_i}} < 2,
\]
but there were none. Q.E.D.

Lemma 3. Suppose \(M = \prod_{i=1}^{5} p_i^{a_i} \) is OAP. Then
\[
S\left(\prod_{i=1}^{5} p_i^{a_i} \right) < S(3^{12}) \frac{5}{4} S(17^6) \frac{257}{256} \frac{62939}{62938} = \beta < 2 - 8/10^{11}.
\]

Proof. Since \(M \) is OAP, by [3], \(r > 6 \) and
\[
\begin{align*}
\alpha_i & \equiv 0 (2) \text{ for all } i, \\
\text{if } p_i = 3, \alpha_i & = 12, 16 \text{ or } > 24, \\
\text{if } p_i = 5, \alpha_i & = 2, 10 \text{ or } > 16, \\
\text{if } p_i = 257, \alpha_i & > 16.
\end{align*}
\]
We used the computer to find odd integers \(\prod_{i=1}^{5} p_i^{a_i} \) satisfying (7) and
\[
\alpha < \frac{S}{\prod_{i=1}^{5} p_i^{a_i}} < 2,
\]
and the results were
\[
3^a 5^{10} 17^a 257^a 65449^a, \quad \text{where } a_1 > 24, a_3 > 8, a_4 > 16, a_5 > 2, \text{ and}
\]
\[
3^{12} 5^a 17^6 257^a 62939^a, \quad \text{where } a_2 > 16, a_4 > 16, a_5 > 2.
\]
Since
\[
\frac{3}{2} S(5^{10}) \frac{17}{16} \frac{257}{256} \frac{65449}{65448} < S(3^{12}) \frac{5}{4} S(17^6) \frac{257}{256} \frac{62939}{62938} = \beta,
\]
Lemma 3 follows. Q.E.D.

Proof of Theorem. We prove only the case \(i = 5 \). Suppose \(M = \prod_{i=1}^{5} p_i^{a_i} \) is OP or QP, \(N = \prod_{i=1}^{5} p_i^{a_i} \), and
\[
\frac{2}{2 - \alpha} (r - 5) + 1 < p_6 < \cdots < p_r.
\]
Since \(\log(1 + x) < x \) and \(\log(1 - x) < -x \) if \(0 < x < 1 \), we have, by Lemmas 1 and 2,
\[
\log 2 < \log S(M) = \log S(N) + \sum_{i=6}^{r} \log S(p_i^{a_i})
\]
\[
< \log \alpha + (r - 5) \log S(p_6^{a_6})
\]
\[
< \log 2 + \log \alpha/2 + (r - 5) \log p_6/(p_6 - 1)
\]
\[
= \log 2 + \log(1 - (2 - \alpha)/2) + (r - 5) \log(1 + 1/(p_6 - 1))
\]
\[
< \log 2 - (2 - \alpha)/2 + (r - 5)/(p_6 - 1)
\]
\[
< \log 2 - (2 - \alpha)/2 + (2 - \alpha)/2 = \log 2,
\]
a contradiction. Hence,
\[
p_6 < \frac{2}{2 - \alpha} (r - 5) + 1 = 2^3 (r - 5) + 1.
\]
Since \(p_6 \) is a prime, \(p_6 < 2^3 (r - 5) \).
Suppose $M = \prod_{i=1}^{r} p_i^{a_i}$ is OAP, $N = \prod_{i=1}^{5} p_i^{a_i}$, and
\[
\frac{2}{2 - \beta} (r - 5) + 1 < p_6 < \cdots < p_r.
\]
Since $M > 10^{30}$ by [4] and $\log(1 - x) < -x - x^2/2$ if $0 < x < 1$, we have, by Lemma 3,
\[
\log 2 - \frac{1}{2} \cdot 10^{30} \approx \log 2 + \log \left(1 - \frac{1}{2} \cdot 10^{30}\right)
\]
\[
= \log(2 - 1/10^{30}) < \log(2 - 1/M) = \log(S(M)/M)
\]
\[
= \log S(N) + \sum_{i=6}^{r} \log(p_i^{a_i}) < \log \beta + (r - 5)\log p_6 / (p_6 - 1)
\]
\[
< \log 2 + \log(1 - (2 - \beta)/2) + (r - 5) / (p_6 - 1)
\]
\[
< \log 2 - (2 - \beta)/2 - (2 - \beta)^2/8 + (2 - \beta)/2
\]
\[
= \log 2 - (2 - \beta)^2/8 \approx \log 2 - 9 \cdot 10^{-22},
\]
a contradiction. Hence
\[
p_6 < \frac{2}{2 - \beta} (r - 5) + 1 < 23775427335(r - 5) + 1.
\]
Since p_6 is a prime, $p_6 < 23775427335(r - 5)$. Q.E.D.

Finally, we (re)state the following

Theorem. Suppose $N = \prod_{i=1}^{r} p_i^{a_i}$ is an integer.

- (a) If $r = 5$, $\left|2 - S(N)\right| > 2 - S(3756172233) \cdot 36550429/36550428 > 10^{-14}$.
- (b) If $r = 4$, $\left|2 - S(N)\right| > 2 - S(3756172233) > 5/10^8$.
- (c) If $r = 3$, $\left|2 - S(N)\right| > S(3^{5}5^{2}13) - 2 > 3/10^4$.
- (d) If $r = 2$, $\left|2 - S(N)\right| > 2 - \frac{3}{2} \cdot \frac{5}{4} = 0.125$.
- (e) If $r = 1$, $\left|2 - S(N)\right| > 2 - \frac{3}{2} = 0.5$.

Mathematics Department
University of Toledo
Toledo, Ohio 43606