Krylov subspace methods for solving large unsymmetric linear systems

Author:
Y. Saad

Journal:
Math. Comp. **37** (1981), 105-126

MSC:
Primary 65F10

DOI:
https://doi.org/10.1090/S0025-5718-1981-0616364-6

MathSciNet review:
616364

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Some algorithms based upon a projection process onto the Krylov subspace are developed, generalizing the method of Conjugate gradients to unsymmetric systems. These methods are extensions of Arnoldi's algorithm for solving eigenvalue problems. The convergence is analyzed in terms of the distance of the solution to the subspace and some error bounds are established showing, in particular, a similarity with the conjugate gradient method (for symmetric matrices) when the eigenvalues are real. Several numerical experiments are described and discussed.

**[1]**W. E. Arnoldi,*The principle of minimized iteration in the solution of the matrix eigenvalue problem*, Quart. Appl. Math.**9**(1951), 17–29. MR**0042792**, https://doi.org/10.1090/S0033-569X-1951-42792-9**[2]**Owe Axelsson,*Solution of linear systems of equations: iterative methods*, Sparse matrix techniques (Adv. Course, Technical Univ. Denmark, Copenhagen, 1976) Springer, Berlin, 1977, pp. 1–51. Lecture Notes in Math., Vol. 572. MR**0448834****[3]**È¦ke Björck and Tommy Elfving,*Accelerated projection methods for computing pseudoinverse solutions of systems of linear equations*, BIT**19**(1979), no. 2, 145–163. MR**537775**, https://doi.org/10.1007/BF01930845**[4]**A. Clayton,*Further Results on Polynomials Having Least Maximum Modules Over an Ellipse in the Complex Plane*, UKAEA Report AEEW-7348, 1963.**[5]**P. Concus & G. H. Golub,*A Generalized Conjugate Gradient Method for Non-Symmetric Systems of Linear Equations*, Report STAN-CS-75-535, Computer Science Dept., Stanford University, 1976.**[6]**D. K. Faddeev and V. N. Faddeeva,*Computational methods of linear algebra*, Translated by Robert C. Williams, W. H. Freeman and Co., San Francisco-London, 1963. MR**0158519****[7]**Alston S. Householder,*The theory of matrices in numerical analysis*, Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1964. MR**0175290****[8]**M. A. Krasnosel′skiĭ, G. M. Vaĭnikko, P. P. Zabreĭko, Ya. B. Rutitskii, and V. Ya. Stetsenko,*Approximate solution of operator equations*, Wolters-Noordhoff Publishing, Groningen, 1972. Translated from the Russian by D. Louvish. MR**0385655****[9]**Cornelius Lanczos,*Solution of systems of linear equations by minimized-iterations*, J. Research Nat. Bur. Standards**49**(1952), 33–53. MR**0051583****[10]**V. I. Lebedev,*Iterative methods of solving operator equations with spectrum located on several segments*, Ž. Vyčisl. Mat. i Mat. Fiz.**9**(1969), 1247–1252 (Russian). MR**0272171****[11]**G. G. Lorentz,*Approximation of functions*, Holt, Rinehart and Winston, New York-Chicago, Ill.-Toronto, Ont., 1966. MR**0213785****[12]**T. A. Manteuffel,*An Iterative Method for Solving Nonsymmetric Linear Systems With Dynamic Estimation of Parameters*, Report UIUCDCS-R-75-758, Dept. of Computer Science, Univ. of Illinois at Urbana-Champaign; Ph.D. thesis, 1975.**[13]**C. C. Paige,*Bidiagonalization of matrices and solutions of the linear equations*, SIAM J. Numer. Anal.**11**(1974), 197–209. MR**0341842**, https://doi.org/10.1137/0711019**[14]**C. C. Paige and M. A. Saunders,*Solutions of sparse indefinite systems of linear equations*, SIAM J. Numer. Anal.**12**(1975), no. 4, 617–629. MR**0383715**, https://doi.org/10.1137/0712047**[15]**B. N. Parlett,*A new look at the Lanczos algorithm for solving symmetric systems of linear equations*, Linear Algebra Appl.**29**(1980), 323–346. MR**562767**, https://doi.org/10.1016/0024-3795(80)90248-7**[16]**J. K. Reid,*On the method of conjugate gradients for the solution of large sparse systems of linear equations*, Large sparse sets of linear equations (Proc. Conf., St. Catherine’s Coll., Oxford, 1970) Academic Press, London, 1971, pp. 231–254. MR**0341836****[17]**Theodore J. Rivlin,*The Chebyshev polynomials*, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR**0450850****[18]**Y. Saad,*Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices*, Linear Algebra Appl.**34**(1980), 269–295. MR**591435**, https://doi.org/10.1016/0024-3795(80)90169-X**[19]**P. E. Saylor,*Richardson's Iteration With Dynamic Parameters and the SIP Approximate Factorization for the Solution of the Pressure Equation*, Society of Petroleum Engineers of AIME Fifth Symposium on Reservoir Simulation, Denver, Colorado, 1979, SPE 7688.**[20]**G. W. Stewart,*Introduction to matrix computations*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1973. Computer Science and Applied Mathematics. MR**0458818****[21]**Herbert L. Stone,*Iterative solution of implicit approximations of multidimensional partial differential equations*, SIAM J. Numer. Anal.**5**(1968), 530–558. MR**0238504**, https://doi.org/10.1137/0705044**[22]**Richard S. Varga,*A comparison of the successive overrelaxation method and semi-iterative methods using Chebyshev polynomials*, J. Soc. Indust. Appl. Math.**5**(1957), 39–46. MR**0090129****[23]**H. E. Wrigley,*Accelerating the Jacobi method for solving simultaneous equations by Chebyshev extrapolation when the eigenvalues of the iteration matrix are complex*, Comput. J.**6**(1963/1964), 169–176. MR**0152115**, https://doi.org/10.1093/comjnl/6.2.169

Retrieve articles in *Mathematics of Computation*
with MSC:
65F10

Retrieve articles in all journals with MSC: 65F10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1981-0616364-6

Article copyright:
© Copyright 1981
American Mathematical Society