Computation of integrals with oscillatory and singular integrands

Authors:
Bing Yuan Ting and Yudell L. Luke

Journal:
Math. Comp. **37** (1981), 169-183

MSC:
Primary 65D30; Secondary 41A60

DOI:
https://doi.org/10.1090/S0025-5718-1981-0616369-5

MathSciNet review:
616369

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with evaluation of integrals whose integrands are oscillatory and contain singularities at the endpoints of the interval of integration. A typical form is , where *a* and *b* can be finite or infinite, is a parameter which is usually large, is analytic in the range of integration, and the singularities are encompassed in the weight function . We suppose that can be expanded in series of polynomials which are orthogonal over the interval of integration with respect to . There are two such expansions for . One is an infinite series which follows from the usual orthogonality property. The other is a polynomial approximation plus a remainder. The relations between the coefficients in these representations are detailed and methods for the evaluation of these are analyzed. Error analyses are provided. A numerical example is given to illustrate the effectiveness of the schemes developed.

**[1]**L. N. G. Filon, "On a quadrature formula for trigonometric integrals,"*Proc. Roy. Soc. Edinburgh*, v. 49, 1929, pp. 38-47.**[2]**Yudell L. Luke,*On the computation of oscillatory integrals*, Proc. Cambridge Philos. Soc.**50**(1954), 269–277. MR**0062518****[3]**J. N. Lyness,*The calculation of Fourier coefficients by the Möbius inversion of the Poisson summation formula. I. Functions whose early derivatives are continuous*, Math. Comp.**24**(1970), 101–135. MR**0260230**, https://doi.org/10.1090/S0025-5718-1970-0260230-8**[4]**J. N. Lyness,*The calculation of Fourier coefficients by the Möbius inversion of the Poisson summation formula. II. Piecewise continuous functions and functions with poles near the interval [0,1]*, Math. Comp.**25**(1971), 59–78. MR**0293846**, https://doi.org/10.1090/S0025-5718-1971-0293846-4**[5]**J. N. Lyness,*The calculation of Fourier coefficients by the Möbius inversion of the Poisson summation formula. III. Functions having algebraic singularities*, Math. Comp.**25**(1971), 483–493. MR**0297162**, https://doi.org/10.1090/S0025-5718-1971-0297162-6**[6]**Yudell L. Luke,*On the error in a certain interpolation formula and in the Gaussian integration formula*, J. Austral. Math. Soc.**19**(1975), 196–209. MR**0386232****[7]**Yudell L. Luke, Bing Yuan Ting, and Marilyn J. Kemp,*On generalized Gaussian quadrature*, Math. Comp.**29**(1975), no. 132, 1083–1093. MR**0388740**, https://doi.org/10.1090/S0025-5718-1975-0388740-8**[8]**N. S. Bahvalov and L. G. Vasil′eva,*The calculation of integrals of oscillatory functions by interpolation at the Gaussian quadrature nodes*, Ž. Vyčisl. Mat. i Mat. Fiz.**8**(1968), 175–181 (Russian). MR**0226851****[9]**R. Piessens and F. Poleunis,*A numerical method for the integration of oscillatory functions*, Nordisk Tidskr. Informationsbehandling (BIT)**11**(1971), 317–327. MR**0288959****[10]**T. N. L. Patterson,*On high precision methods for the evaluation of Fourier integrals with finite and infinite limits*, Numer. Math.**27**(1976/77), no. 1, 41–52. MR**0433932**, https://doi.org/10.1007/BF01399083**[11]**R. K. Littlewood and V. Zakian,*Numerical evaluation of Fourier integrals*, J. Inst. Math. Appl.**18**(1976), no. 3, 331–339. MR**0448822****[12]**Philip J. Davis and Philip Rabinowitz,*Numerical integration*, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1967. MR**0211604****[13]**J. D. Donaldson and David Elliott,*A unified approach to quadrature rules with asymptotic estimates of their remainders*, SIAM J. Numer. Anal.**9**(1972), 573–602. MR**0317522**, https://doi.org/10.1137/0709051**[14]**C. W. Clenshaw and A. R. Curtis,*A method for numerical integration on an automatic computer*, Numer. Math.**2**(1960), 197–205. MR**0117885**, https://doi.org/10.1007/BF01386223**[15]**G. Freud,*Orthogonal Polynomials*, Pergamon Press, Oxford and New York, 1971.**[16]**A. C. Aitken, "On Bernoulli's numerical solution of algebraic equations,"*Proc. Roy. Soc. Edinburgh*, v. 46, 1926, pp. 289-305.**[17]**I. P. Natanson,*Constructive Function Theory*, Vols. 1, 2 and 3, Ungar, New York, 1964.**[18]**J. Prasad,*On an approximation of function and its derivatives*, Publ. Inst. Math. (Beograd) (N.S.)**14(28)**(1972), 129–132. MR**0407524****[19]**A. Erdélyi et al.,*Higher Transcendental Functions*, Vol. 2, McGraw-Hill, New York, 1954.**[20]**Y. L. Luke,*The Special Functions and Their Approximations*, Vols. 1 and 2, Academic Press, New York and London, 1969.**[21]**Walter Gautschi,*Computational aspects of three-term recurrence relations*, SIAM Rev.**9**(1967), 24–82. MR**0213062**, https://doi.org/10.1137/1009002**[22]**Jet Wimp,*Derivative-free iteration processes of higher order*, ARL 69-0183, Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, Wright-Patterson Air Force Base, Ohio, 1969. MR**0253554****[23]**J. Wimp, "Recent development in recursive computation,"*SIAM Studies in Appl. Math.*, Vol. VI, Philadelphia, Pa., 1970, pp. 101-123.**[24]**Yudell L. Luke,*On the error in the Padé approximants for a form of the incomplete gamma function including the exponential function*, SIAM J. Math. Anal.**6**(1975), no. 5, 829–839. MR**0385413**, https://doi.org/10.1137/0506072**[25]**B. Y. Ting,*Evaluation of Integrals Whose Integrands Are Oscillatory and Singular*, Ph.D. Thesis, University of Missouri, Kansas City, Mo., 1979.

Retrieve articles in *Mathematics of Computation*
with MSC:
65D30,
41A60

Retrieve articles in all journals with MSC: 65D30, 41A60

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1981-0616369-5

Keywords:
Fourier coefficients,
numerical quadrature,
integration of oscillatory and singular integrands,
interpolation

Article copyright:
© Copyright 1981
American Mathematical Society