Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A class of Steiner triple systems of order $ 21$ and associated Kirkman systems


Authors: Rudolf A. Mathon, Kevin T. Phelps and Alexander Rosa
Journal: Math. Comp. 37 (1981), 209-222
MSC: Primary 05B07; Secondary 51E10
DOI: https://doi.org/10.1090/S0025-5718-1981-0616374-9
Addendum: Math. Comp. 64 (1995), 1355-1356.
MathSciNet review: 616374
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We examine a class of Steiner triple systems or order 21 with an automorphism consisting of three disjoint cycles of length 7. We exhibit explicitly all members of this class: they number 95 including the 7 cyclic systems. We then examine resolvability of the obtained systems; only 6 of the 95 are resolvable yielding a total of 30 nonisomorphic Kirkman triple systems of order 21. We also list several invariants of the systems and investigate their further properties.


References [Enhancements On Off] (What's this?)

  • [1] W. Ahrens, Mathematische Unterhaltungen und Spiele, Bd. II, 2 Aufl., Teubner, Leipzig, 1918.
  • [2] L. Babai, "Almost all Steiner triple systems are asymmetric," Ann. Discrete Math., v. 7, 1980, pp. 37-39. MR 584402
  • [3] W. W. Rouse Ball, Mathematical Recreations and Essays, 11th ed., Macmillan, London, 1939. MR 0019629 (8:440b)
  • [4] S. Bays, "Recherche des systèmes cycliques de triples de Steiner différents pour N premier (ou puissance de nombre premier)," J. Math. Pures Appl. (9), v. 2, 1923, pp. 73-98.
  • [5] A. Bray, "Twenty-one school-girl puzzle," Knowledge, v. 3, 1883, p. 268.
  • [6] M. J. Colbourn, An Analysis Technique for Steiner Triple Systems, Proc. Tenth S.-E. Conf. Combinatorics, Graph Theory and Computing, Vol. I, Boca Raton, 1979, pp. 289-303. MR 561056 (83c:05019)
  • [7] M. J. Colbourn & R. A. Mathon, "On cyclic Steiner 2-designs," Ann. Discrete Math., v. 7, 1980, pp. 215-253. MR 584415
  • [8] F. N. Cole, "Kirkman parades," Bull. Amer. Math. Soc., v. 28, 1922, pp. 435-437. MR 1560613
  • [9] R. H. F. Denniston, "On the number of non-isomorphic reverse Steiner triple systems of order 19," Ann. Discrete Math., v. 7, 1980, pp. 255-264.
  • [10] J. Doyen & A. Rosa, An Extended Bibliography and Survey of Steiner Systems, Proc. 7th Manitoba Conf. Numerical Math, and Computing, Winnipeg, 1977, pp. 297-361. MR 535016 (80g:51009)
  • [11] H. E. Dudeney, "On Kirkman's schoolgirl problem," Educational Times Reprints (2), v. 15, 1909, pp. 17-19.
  • [12] M. Hall, Jr., Combinatorial Theory, Blaisdell, Waltham, Mass., 1967. MR 0224481 (37:80)
  • [13] R. A. Mathon & S. A. Vanstone, "On the existence of doubly resolvable Kirkman systems and equidistant permutation arrays," Discrete Math., v. 30, 1980, pp. 157-177. MR 566432 (81h:05025)
  • [14] P. Mulder, Kirkman-systemen, Academisch Proefschrift ter verkrijging van den graad van doctor in de Wis- en Natuurkunde aan de Rijksuniversiteit te Groningen, Leiden, 1917.
  • [15] L. P. Petrenjuk & A. J. Petrenjuk, "Postroenie nekotoryh klassov kubičeskih grafov i neizomorfnost' Kirkmanovyh sistem troek," Kombin. Anal., v. 4, 1976, pp. 73-77.
  • [16] K. T. Phelps & A. Rosa, "Rotational Steiner triple systems," Discrete Math., v. 33, 1981, pp. 57-66. MR 597228 (82a:05018)
  • [17] D. K. Ray-Chaudhuri & R. M. Wilson, Solution of Kirkman's Schoolgirl Problem, Proc. Sympos. Pure Math., vol. 19, Amer. Math. Soc., Providence, R. I., 1971, pp. 187-203. MR 0314644 (47:3195)
  • [18] A. Rosa, "Ispol'zovanie grafov dl'a rešenia zadači Kirkmana," Mat.-Fyz. Časopis, v. 13, 1963, pp. 105-113.
  • [19] A. Rosa, "Generalized Howell designs," Ann. N. Y. Acad. Sci., v. 319, 1979, pp. 484-489. MR 556058 (81j:05033)
  • [20] A. Rosa, "Room squares generalized," Proc. CFCC, Montreal, 1979; Ann. Discrete Math. (To appear.) MR 597154 (82b:05036)
  • [21] R. M. Wilson, "Nonisomorphic Steiner triple systems," Math. Z., v. 135, 1974, pp. 303-313. MR 0340046 (49:4803)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 05B07, 51E10

Retrieve articles in all journals with MSC: 05B07, 51E10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1981-0616374-9
Keywords: Steiner triple system, Kirkman triple system, isomorphism, resolvability
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society