Lowest order squared rectangles and squares with the largest element not on the boundary

Authors:
A. J. W. Duijvestijn and P. Leeuw

Journal:
Math. Comp. **37** (1981), 223-228

MSC:
Primary 05B45; Secondary 52A45

MathSciNet review:
616375

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The lowest order squared rectangles and squares with the largest element not on the boundary are presented.

**[1]**R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte,*The dissection of rectangles into squares*, Duke Math. J.**7**(1940), 312–340. MR**0003040****[2]**C. J. Bouwkamp,*On the dissection of rectangles into squares. I*, Nederl. Akad. Wetensch., Proc.**49**(1946), 1176–1188 = Indagationes Math. 8, 724–736 (1946). MR**0019310****[3]**P. J. Federico,*Squaring rectangles and squares*, Graph theory and related topics (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1977) Academic Press, New York-London, 1979, pp. 173–196. A historical review with annotated bibliography. MR**538045****[4]**W. T. Tutte,*A theory of 3-connected graphs*, Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math.**23**(1961), 441–455. MR**0140094****[5]**Adrianus Johannes Wilhelmus Duijvestijn,*Electronic computation of squared rectangles*, Thesis, Technische Wetenschap aan de Technische Hogeschool te Eindhoven, Eindhoven, 1962. MR**0144492****[6]**A. J. W. Duijvestijn,*Algorithmic Identification of Graphs and Determination of the Order of the Automorphism Group of a Graph*, Memorandum 220, Twente University of Technology, Enschede, The Netherlands, 1978.**[7]**A. J. W. Duijvestijn,*Tables of Simple Squared Squares of Orders 13 Through 21 and**Rectangles of Orders*17*Through*21, Twente University of Technology, Enschede, The Netherlands, 1979.

Retrieve articles in *Mathematics of Computation*
with MSC:
05B45,
52A45

Retrieve articles in all journals with MSC: 05B45, 52A45

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1981-0616375-0

Keywords:
Squared rectangles,
dissection of rectangles,
tiling

Article copyright:
© Copyright 1981
American Mathematical Society