The problem of Sierpiński concerning
Authors:
Robert Baillie, G. Cormack and H. C. Williams
Journal:
Math. Comp. 37 (1981), 229231
MSC:
Primary 10A25
Corrigendum:
Math. Comp. 39 (1982), 308.
Corrigendum:
Math. Comp. 39 (1982), 308.
MathSciNet review:
616376
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be the least odd value of k such that is composite for all . In this note, we present the results of some extensive computations which restrict the value of to one of 119 numbers between 3061 and 78557 inclusive. Some new large primes are also given.
 [1]
G.
V. Cormack and H.
C. Williams, Some very large primes of the form
𝑘⋅2^{𝑚}+1, Math. Comp.
35 (1980), no. 152, 1419–1421. MR 583519
(81i:10011), http://dx.doi.org/10.1090/S00255718198005835198
 [2]
P.
Erdős and A.
M. Odlyzko, On the density of odd integers of the form
(𝑝1)2⁻ⁿ and related questions, J. Number Theory
11 (1979), no. 2, 257–263. MR 535395
(80i:10077), http://dx.doi.org/10.1016/0022314X(79)90043X
 [3]
Richard
K. Guy, Unsolved combinatorial problems, Combinatorial
Mathematics and its Applications (Proc. Conf., Oxford, 1969), Academic
Press, London, 1971, pp. 121–127. MR 0277393
(43 #3126)
 [4]
Oystein
Ore, J.
L. Selfridge, and P.
T. Bateman, Advanced Problems and Solutions: Solutions: 4995,
Amer. Math. Monthly 70 (1963), no. 1, 101–102.
MR
1532000, http://dx.doi.org/10.2307/2312814
 [5]
W.
Sierpiński, Sur un problème concernant les nombres
𝑘⋅2ⁿ+1, Elem. Math. 15 (1960),
73–74 (French). MR 0117201
(22 #7983)
 [6]
W. Sierpiński, 250 Problems in Elementary Number Theory, American Elsevier, New York, 1970, p. 10 and p. 64.
 [1]
 G. Cormack & H. C. Williams, "Some very large primes of the form ," Math. Comp., v. 35, 1980, pp. 14191421. MR 583519 (81i:10011)
 [2]
 P. Erdös & A. M. Odlyzko, "On the density of odd integers of the form and related questions," J. Number Theory, v. 11, 1979, pp. 257263. MR 535395 (80i:10077)
 [3]
 R. K. Guy, "Some unsolved problems," in Computers in Number Theory (A. O. L. Atkin and B. J. Birch, Eds.), Academic Press, New York, 1971, pp. 415422. MR 0277393 (43:3126)
 [4]
 J. L. Selfridge, "Solution to problem 4995," Amer. Math. Monthly, v. 70, 1963, p. 101. MR 1532000
 [5]
 W. Sierpiński, "Sur un problème concernant les nombres ," Elem. Math., v. 15, 1960, pp. 7374; Corrigendum, v. 17, 1962, p. 85. MR 0117201 (22:7983)
 [6]
 W. Sierpiński, 250 Problems in Elementary Number Theory, American Elsevier, New York, 1970, p. 10 and p. 64.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
10A25
Retrieve articles in all journals
with MSC:
10A25
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198106163762
PII:
S 00255718(1981)06163762
Article copyright:
© Copyright 1981
American Mathematical Society
