Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

Finite element analysis of a scattering problem


Authors: A. K. Aziz and R. Bruce Kellogg
Journal: Math. Comp. 37 (1981), 261-272
MSC: Primary 65N30; Secondary 35J05
MathSciNet review: 628694
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A finite element method for the solution of a scattering problem for the reduced wave equation is formulated and analyzed. The method involves a reformulation of the problem on a bounded domain with a nonlocal boundary condition. The space of trial functions includes piecewise polynomial functions and functions arising from spherical harmonics.


References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz & I. A. Stegun, Handbook of Mathematical Functions, U. S. Government Printing Office, Washington, D. C., 1965.
  • [2] M. S. Agranovič, Elliptic singular integro-differential operators, Uspehi Mat. Nauk 20 (1965), no. 5 (125), 3–120 (Russian). MR 0198017 (33 #6176)
  • [3] A. K. Aziz (ed.), The mathematical foundations of the finite element method with applications to partial differential equations, Academic Press, New York-London, 1972. MR 0347104 (49 #11824)
  • [4] P. W. Barber, "Resonance electromagnetic absorption by non spherical dielectric objects," IEEE Trans. Microwave Theory. Tech, 1977, pp. 373-381.
  • [5] Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223. MR 0482275 (58 #2349)
  • [6] Peter Bettess "Infinite elements," Internat. J. Numer. Methods Engrg., v. 11, 1977, pp. 53-64.
  • [7] F. Brezzi & C. Johnson, On the Coupling of Boundary Coupling and the Finite Element Method, Dept. of Computer Science, Chalmers University of Technology, Report 77.15R, 1977.
  • [8] P. Grisvard, Caractérisation de quelques espaces d’interpolation, Arch. Rational Mech. Anal. 25 (1967), 40–63 (French). MR 0213864 (35 #4718)
  • [9] B. G. Guru & K. N. Chen, "Experimental and theoretical studies on electromagnetic fields induced inside finite biological bodies," IEEE Trans. Microwave Theory Tech., v. 24, 1976, pp. 433-440.
  • [10] S. P. Marin, A Finite Element Method for Problems Involving the Helmholtz Equation in 2-Dimensional Exterior Regions, Doctoral Thesis, Carnegie-Mellon University, 1978.
  • [11] C. Müller, Foundations of the Mathematical Theory of Electromagnetic Waves, Springer-Verlag, New York, 1969.
  • [12] C. Müller and H. Kersten, Zwei Klassen vollständiger Funktionensysteme zur Behandlung der Randwertaufgaben der Schwingungsgleichung Δ𝑈+𝑘²𝑈=0, Math. Methods Appl. Sci. 2 (1980), no. 1, 48–67 (German, with English summary). MR 561378 (81k:35037), http://dx.doi.org/10.1002/mma.1670020106
  • [13] James M. Ortega, Numerical analysis. A second course, Academic Press, New York-London, 1972. Computer Science and Applied Mathematics. MR 0403154 (53 #6967)
  • [14] Alfred H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp. 28 (1974), 959–962. MR 0373326 (51 #9526), http://dx.doi.org/10.1090/S0025-5718-1974-0373326-0
  • [15] G. W. Stewart, Introduction to matrix computations, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1973. Computer Science and Applied Mathematics. MR 0458818 (56 #17018)
  • [16] J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941.
  • [17] K. Yosida, Functional Analysis, Grundlehren der Math. Wissenschaften, vol. 123, Springer-Verlag, Berlin and New York, 1975.
  • [18] O. C. Zienkiewicz, D. W. Kelly, and P. Bettess, The coupling of the finite element method and boundary solution procedures, Internat. J. Numer. Methods Engrg. 11 (1977), no. 2, 355–375. MR 0451784 (56 #10066)
  • [19] A. K. Aziz, M. R. Dorr & R. B. Kellogg, A New Approximation Method for the Helmholtz Equation in an Exterior Domain, Technical Report, UMBC, 1981.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 35J05

Retrieve articles in all journals with MSC: 65N30, 35J05


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1981-0628694-2
PII: S 0025-5718(1981)0628694-2
Article copyright: © Copyright 1981 American Mathematical Society