Stability of pseudospectral and finitedifference methods for variable coefficient problems
Authors:
David Gottlieb, Steven A. Orszag and Eli Turkel
Journal:
Math. Comp. 37 (1981), 293305
MSC:
Primary 65M10
MathSciNet review:
628696
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: It is shown that pseudospectral approximation to a special class of variable coefficient onedimensional wave equations is stable and convergent even though the wave speed changes sign within the domain. Computer experiments indicate similar results are valid for more general problems. Similarly, computer results indicate that the leapfrog finitedifference scheme is stable even though the wave speed changes sign within the domain. However, both schemes can be asymptotically unstable in time when a fixed spatial mesh is used.
 [1]
B.
Fornberg, On the instability of leapfrog and
CrankNicolson approximations of a nonlinear partial differential
equation, Math. Comp. 27 (1973), 45–57. MR 0395249
(52 #16046), http://dx.doi.org/10.1090/S00255718197303952492
 [2]
Bengt
Fornberg, On a Fourier method for the integration of hyperbolic
equations, SIAM J. Numer. Anal. 12 (1975),
no. 4, 509–528. MR 0421096
(54 #9101)
 [3]
David
Gottlieb and Steven
A. Orszag, Numerical analysis of spectral methods: theory and
applications, Society for Industrial and Applied Mathematics,
Philadelphia, Pa., 1977. CBMSNSF Regional Conference Series in Applied
Mathematics, No. 26. MR 0520152
(58 #24983)
 [4]
David
Gottlieb, Liviu
Lustman, and Steven
A. Orszag, Spectral calculations of onedimensional inviscid
compressible flows, SIAM J. Sci. Statist. Comput. 2
(1981), no. 3, 296–310. MR 632901
(82m:76002), http://dx.doi.org/10.1137/0902024
 [5]
David
Gottlieb and Eli
Turkel, On time discretizations for spectral methods, Stud.
Appl. Math. 63 (1980), no. 1, 67–86. MR 578457
(82j:65083)
 [6]
D. Gottlieb, S. A. Orszag & E. Turkel, Stability of Pseudospectral and Finite Difference Methods for Variable Coefficient Problems, ICASE Report 7932, 1979.
 [7]
Bertil
Gustafsson, On difference approximations to hyperbolic differential
equations over long time intervals, SIAM J. Numer. Anal.
6 (1969), 508–522. MR 0260210
(41 #4838)
 [8]
HeinzOtto
Kreiss and Joseph
Oliger, Comparison of accurate methods for the integration of
hyperbolic equations, Tellus 24 (1972), 199–215
(English, with Russian summary). MR 0319382
(47 #7926)
 [9]
HeinzOtto
Kreiss and Joseph
Oliger, Stability of the Fourier method, SIAM J. Numer. Anal.
16 (1979), no. 3, 421–433. MR 530479
(80i:65130), http://dx.doi.org/10.1137/0716035
 [10]
Andrew
Majda, James
McDonough, and Stanley
Osher, The Fourier method for nonsmooth
initial data, Math. Comp.
32 (1978), no. 144, 1041–1081. MR 501995
(80a:65197), http://dx.doi.org/10.1090/S00255718197805019954
 [11]
S. A. Orszag, "Comparison of pseudospectral and spectral approximations," Stud. Appl. Math., v. 51, 1972, pp. 253259.
 [12]
Steven
A. Orszag, Spectral methods for problems in complex
geometries, J. Comput. Phys. 37 (1980), no. 1,
70–92. MR
584322 (83e:65188), http://dx.doi.org/10.1016/00219991(80)900054
 [13]
Joseph
E. Pasciak, Spectral and pseudospectral methods
for advection equations, Math. Comp.
35 (1980), no. 152, 1081–1092. MR 583488
(81i:65073), http://dx.doi.org/10.1090/S00255718198005834880
 [14]
Robert
D. Richtmyer and K.
W. Morton, Difference methods for initialvalue problems,
Second edition. Interscience Tracts in Pure and Applied Mathematics, No. 4,
Interscience Publishers John Wiley & Sons, Inc., New
YorkLondonSydney, 1967. MR 0220455
(36 #3515)
 [15]
A.
Zygmund, Trigonometric series: Vols. I, II, Second edition,
reprinted with corrections and some additions, Cambridge University Press,
LondonNew York, 1968. MR 0236587
(38 #4882)
 [1]
 B. Fornberg, "On the instability of LeapFrog and CrankNicolson approximations of a nonlinear partial differential equation," Math. Comp., v. 27, 1973, pp. 4557. MR 0395249 (52:16046)
 [2]
 B. Fornberg, "On a Fourier method for the integration of hyperbolic equations," SIAM J. Numer. Anal., v. 12, 1975, pp. 509528. MR 0421096 (54:9101)
 [3]
 D. Gottlieb & S. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, SIAM Regional Conf. Series in Appl. Math., 1977. MR 0520152 (58:24983)
 [4]
 D. Gottlieb, L. Lustman & S. A. Orszag, "Spectral calculations of one dimensional, inviscid compressible flow," SIAM J. Sci. Statist. Comput., Oct. 1981. MR 632901 (82m:76002)
 [5]
 D. Gottueb & E. Turkel, "On time discretizations for spectral methods," Stud. Appl. Math., v. 63, 1980, pp. 6786. MR 578457 (82j:65083)
 [6]
 D. Gottlieb, S. A. Orszag & E. Turkel, Stability of Pseudospectral and Finite Difference Methods for Variable Coefficient Problems, ICASE Report 7932, 1979.
 [7]
 B. Gustafsson, "On difference approximations to hyperbolic differential equations over long time intervals," SIAM J. Numer. Anal., v. 6, 1969, pp. 508522. MR 0260210 (41:4838)
 [8]
 H. O. Kreiss & J. Oliger, "Comparison of accurate methods for the integration of hyperbolic equations," Tellus, v. 24, 1972, pp. 199215. MR 0319382 (47:7926)
 [9]
 H. O. Kreiss & J. Oliger, "Stability of the Fourier method," SIAM J. Numer. Anal., v. 16, 1979, pp. 421433. MR 530479 (80i:65130)
 [10]
 A. Majda, J. McDonough & S. Osher, "The Fourier method for nonsmooth initial data," Math. Comp., v. 32, 1978, pp. 10411081. MR 501995 (80a:65197)
 [11]
 S. A. Orszag, "Comparison of pseudospectral and spectral approximations," Stud. Appl. Math., v. 51, 1972, pp. 253259.
 [12]
 S. A. Orszag, "Spectral methods for problems in complex geometries," J. Comput. Phys., v. 37, 1980, pp. 7092. MR 584322 (83e:65188)
 [13]
 J. Pasciak, "Spectral and pseudo spectral methods for advection equations," Math. Comp., v. 35, 1980, pp. 10811092. MR 583488 (81i:65073)
 [14]
 R. D. Richtmyer & K. W. Morton, Difference Methods for InitialValue Problems, 2nd ed., Interscience Tracts in Pure and Appl. Math., No. 4, Interscience, New York, 1967. MR 0220455 (36:3515)
 [15]
 A. Zygmund, Trigonometric Series, Cambridge Univ. Press, New York, 1968. MR 0236587 (38:4882)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65M10
Retrieve articles in all journals
with MSC:
65M10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198106286966
PII:
S 00255718(1981)06286966
Article copyright:
© Copyright 1981
American Mathematical Society
