Numerical stability for some equations of gas dynamics

Author:
A. Y. le Roux

Journal:
Math. Comp. **37** (1981), 307-320

MSC:
Primary 76N15; Secondary 65M10, 76A60

DOI:
https://doi.org/10.1090/S0025-5718-1981-0628697-8

MathSciNet review:
628697

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The isentropic gas dynamics equations in Eulerian coordinates are expressed by means of the density and the momentum , instead of the velocity *u*, in order to get domains bounded and invariant in the -plane, for a wide class of pressure laws and in the monodimensional case. A numerical scheme of the transport-projection type is proposed, which builds an approximate solution valued in such a domain. Since the characteristic speeds are bounded in this set, the stability condition is easily fulfilled and then estimates in the -norm are derived at any time step. Similar results are extended to the model involving friction and topographical terms, and for a simplified model of supersonic flows. The nonapplication of this study to the gas dynamics in Lagrangian coordinates is shown.

**[1]**K. N. Chueh, C. C. Conley & J. A. Smoller, "Positively invariant regions for systems of nonlinear diffusion equations,"*Indiana Univ. Math. J.*, v. 26, 1977, pp. 379-392. MR**0430536 (55:3541)****[2]**J. Glimm, "Solutions in the large for nonlinear hyperbolic systems,"*Comm. Pure Appl. Math.*, v. 18, 1965, pp. 697-715. MR**0194770 (33:2976)****[3]**S. K. Godunov, "A difference method for numerical calculation of discontinuous equations of hydrodynamics,"*Mat. Sb.*, v. 47 (89), 1959, pp. 271-300. MR**0119433 (22:10194)****[4]**P. D. Lax, "Hyperbolic systems of conservation laws. II,"*Comm. Pure Appl. Math.*, v. 10, 1957, pp. 537-566. MR**0093653 (20:176)****[5]**P. D. Lax, "Shock waves and entropy,"*Contribution to Nonlinear Functional Analysis*(E. H. Zarantonello, Ed.), Academic Press, New York, 1971. MR**0367471 (51:3713)****[6]**A. Y. Le Roux,*Approximation de Quelques Problèmes Hyperboliques Non Linéaires*, Thèse d'Etat, Rennes, 1979.**[7]**A. Y. Le Roux, "Etude du problème mixte pour une équation quasilinéaire du premier ordre,"*C. R. Acad. Sci. Paris Ser. A-B*, v. 285, 1977, pp. 351-354. MR**0442449 (56:831)****[8]**A. Y. Le Roux,*Stabilité de Schémas Numériques Adaptés à Certains Modèles Océaniques Non Linéaires*, Rapport C.N.E.X.O. 78, 1963 (1980).**[9]**A. Y. Le Roux, "Stabilité numérique demodèles océaniques non linéaires,"*C. R. Acad. Sci. Paris Ser. A-B.*, v. 290, 1980, pp. 885-888. MR**580164 (81e:35117)****[10]**A. Y. Le Roux, "Stability of numerical schemes solving quasi-linear wave equations,"*Math. Comp.*, v. 36, 1981, pp. 93-105. MR**595044 (82b:65088)****[11]**T. P. Liu, "Uniqueness of weak solutions of the Cauchy problem for general conservation laws,"*J. Differential Equations*, v. 20, 1976, pp. 369-388. MR**0393871 (52:14678)****[12]**T. Nishida & J. A. Smoller, "Mixed problem for nonlinear conservation laws,"*J. Differential Equations*, v. 23, 1977, pp. 244-269. MR**0427852 (55:882)****[13]**S. Osher, "Numerical solution of singular perturbation problems and hyperbolic systems of conservation laws," in*Analytical and Numerical Approaches to Asymptotic Problems in Analysis*, Math. Studies #47 (O. Axelsson, L. S. Franc, A. van der Sluis, Eds.), North-Holland, Amsterdam, 1981, pp. 179-204. MR**605507 (83g:65098)****[14]**B. Wendroff, "The Riemann problem for materials with non convex equation of state I. Isentropic flow,"*J. Math. Pures Appl.*, v. 38, 1977, pp. 454-466; II. General now,*J. Math. Pures Appl.*, v. 38, 1977, pp. 640-658.

Retrieve articles in *Mathematics of Computation*
with MSC:
76N15,
65M10,
76A60

Retrieve articles in all journals with MSC: 76N15, 65M10, 76A60

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1981-0628697-8

Article copyright:
© Copyright 1981
American Mathematical Society