On the BN Stability of the Runge-Kutta Methods

By Giuseppe Piazza

Abstract. In this note sufficient conditions that let Runge-Kutta s stages methods of at least order s be BN stable are given.

1. Introduction. When a numerical method is applied to solve a system of stiff differential equations,

\begin{equation}
y' = f(t, y),
\end{equation}

it is necessary to analyze the properties of stability of the method. Usually the property of A-stability is required [6]. This property is related to the test equation, which is scalar, in which

\[f(t, y) = \lambda y, \quad \lambda \in \mathbb{C}, \quad R_e(\lambda) < 0. \]

Recently Burrage and Butcher [1] have taken into account the following, more general, test equation:

\begin{equation}
y' = f(t, y), \quad f: \mathbb{R}^{N+1} \rightarrow \mathbb{R}^N,
\end{equation}

with

\begin{equation}
\langle f(t, y) - f(t, z), y - z \rangle < 0 \quad \forall y, z \in \mathbb{R}^N, t \in \mathbb{R},
\end{equation}

where $\langle \cdot, \cdot \rangle$ is a scalar product in \mathbb{R}^N with $\| \cdot \|$ as a corresponding norm and they have defined a criterion of stability called BN stability for this particular test equation.

Burrage [4] has constructed a class of high-order BN stable Runge-Kutta methods, but, as he has pointed out, the construction of low-order BN stable methods is not as simple. In this note the sufficient conditions that let a Runge-Kutta s stages method of at least order s be stable are given.

A result that has already been demonstrated in another way [5] about the BN stability of implicit Runge-Kutta methods of maximum order has been obtained as a corollary.

2. Review of Known Results. Before presenting the result of this study I would like to recall some known definitions and results [2], [3].

Consider a Runge-Kutta s stages method which is defined by the following matrix form:
We shall denote the approximation to \(y(t_n) \) with \(y_n \), where \(y(t) \) is the solution to (1.1) and \(t_n = t_{n-1} + h, h > 0, n = 1, 2, \ldots \).

Definition 1. The method (2.1) is BN stable if applied to the test equation (1.2), (1.3) it is such that for each pair of solutions \(\ldots y_{n-1}, y_n, \ldots \) and \(\ldots z_{n-1}, z_n, \ldots \), the result will be

\[
\|y_n - z_n\| \leq \|y_{n-1} - z_{n-1}\|.
\]

Definition 2.

- \(C(p) : \sum_{j=1}^{s} a_{ij} c_{j}^{k-1} = c_{i}^{k}/k, \quad i = 1, 2, \ldots, s, k \leq p. \)
- \(D(p) : \sum_{i=1}^{j} b_{i} c_{i}^{k} a_{ij} = b_{j}(1 - c_{i}^{k}), \quad j = 1, 2, \ldots, s, k \leq p. \)
- \(B(p) : \sum_{i=1}^{j} b_{i} c_{i}^{k-1} = \frac{1}{k}, \quad k \leq p. \)
- \(L(s) : c_{i}, i = 1, 2, \ldots s, \) are the zeros of the polynomial \(P_{s}(2c - 1) \),

where \(P_{s} \) denotes the \(s \) degree Legendre polynomial.

Theorem 1. If (2.1) is such that \(b_{i} > 0, \ i = 1, 2, \ldots s, \) and the matrix \(BB + A^{T}B - bb^{T} \) is not negatively defined (\(B = \text{diag}(b_{1}, b_{2}, \ldots, b_{s}) \)), then (2.1) is BN stable.

Lemma 1. If \(C(\eta) \land D(\xi) \land B(p) \), where \(p < \xi + \eta + 1, p < 2\eta + 2, \) then (2.1) is of the order \(p \) at least.

Theorem 2. \(C(s) \land D(s) \land B(s) \land L(s) \) if and only if (2.1) is of the order \(2s \).

3. Sufficient Conditions for the BN Stability of Runge-Kutta Methods of Order \(s \) at Least.

We define the following matrices and vectors:

- \(D = \text{diag}(1, \frac{1}{2}, \ldots, \frac{1}{s}) \), \(e_{s}^{T}(1, 1, \ldots, 1), \)
- \(C = \text{diag}(c_{1}, c_{2}, \ldots, c_{s}), \ B = \text{diag}(b_{1}, b_{2}, \ldots, b_{s}), \)
- \(E = \begin{bmatrix}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \ldots & 1
\end{bmatrix} \) matrix \(s \times s \),
- \(V_{s} = \begin{bmatrix}
1 & c_{1} & \ldots & c_{1}^{s-1} \\
1 & c_{2} & \ldots & c_{2}^{s-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & c_{s} & \ldots & c_{s}^{s-1}
\end{bmatrix} \).
Note. From Lemma 1 if \(C(s) \land D(s) \land B(s) \), then (2.1) is of order \(s \) at least.

Using the above defined matrices, \(C(s) \), \(D(s) \), \(B(s) \) will become respectively:

\[
C(s): AV_s = CV_sD, \\
D(s): V_s^TBA = D(E - V_s^TC)B, \\
B(s): (Be)^T V_s = (De)^T.
\]

Theorem 3. The class of Runge-Kutta \(s \) stages methods satisfy the properties \(C(s) \), \(D(s) \), \(B(s) \) and for which \(c_i, i = 1, 2, \ldots, s, \) are distinct and \(b_i > 0, i = 1, 2, \ldots, s, \) are BN stable and have an order \(s \) at least.

Proof. Using the property \(D(s) \) and \(C(s) \),

\[
V_s^TBA = DEB - DV_s^T CB = DEB - V_s^TA^TB
\]

from which

\[
BA + A^TB = V_s^{-T}DEB = BEDV_s^{-1} = B \begin{bmatrix}
\text{e}^T \\
\text{e}^T \\
\vdots \\
\text{e}^T
\end{bmatrix} D V_s^{-1} = B \begin{bmatrix}
\text{e}^T D V_s^{-1} \\
\text{e}^T D V_s^{-1} \\
\vdots \\
\text{e}^T D V_s^{-1}
\end{bmatrix};
\]

from \(B(s) \)

\[
V_s^T Be = De \iff Be = V_s^{-T}De \iff e^TDV_s^{-1}.
\]

Therefore it follows that

\[
BA + A^TB = B \begin{bmatrix}
\text{e}^T B \\
\text{e}^T B \\
\vdots \\
\text{e}^T B
\end{bmatrix} \iff BA + A^TB - bb^T = 0.
\]

At this point we would like to recall the fact that there is only one Runge-Kutta \(s \) stages method of order \(2s \) [2] and that according to Theorem 2 it belongs to the class introduced in this note. Having observed that for that method \(b_i > 0, i = 1, 2, \ldots, s \) [2] and \(\det V_s \neq 0 \), it follows that

Corollary. The Runge-Kutta \(s \) stages method of order \(2s \) is BN stable.