Primes Differing by a Fixed Integer

By W. G. Leavitt and Albert A. Mullin

Abstract. It is shown that the equation \((n - 1)^2 - \sigma(n)\phi(n) = m^2\) is always solvable by \(n = p_1p_2\) where \(p_1, p_2\) are primes differing by the integer \(m\). This is called the "Standard" solution of \((*)\) and an \(m\) for which this is the only solution is called a "*-number". While there are an infinite number of non *-numbers there are many (almost certainly infinitely many) *-numbers, including \(m = 2\) (the twin prime case). A procedure for calculating all non *-numbers less than a given bound \(L\) is devised and a table is given for \(L = 1000\).

The prime numbers \(p_1, p_2\) are said to form a pair of "twin primes" if \(p_1 - p_2 = 2\). Using \(\sigma(n)\), the sum of the divisors of \(n\) (including \(n\) itself), and \(\phi(n)\), the number of numbers less than \(n\) and relatively prime to \(n\), S. A. Sergusov [1] has recently announced two criteria for an integer to be the product of twin primes. They are: \(n\) is the product of twin primes if and only if either \(\sigma(n) = n + 1 + 2\sqrt{n} + 1\) or \(\phi(n) = n + 1 - 2\sqrt{n} + 1\). Combining these two results gives the sufficiency for:

Theorem 1. The integer \(n\) is the product of twin primes if and only if

\[(n - 1)^2 - \sigma(n)\phi(n) = 4.\]

Proof of the Necessity. For primes \(p_1 < p_2 < \cdots < p_k\), suppose (1) is satisfied when \(n = \prod^k_1 p_i^{n_i}\). Then (1) can be written

\[2 \prod^k_1 p_i^{n_i} + 3 = \prod^k_1 p_i^{2n_i} - \prod^k_1 (p_i^{2n_i} - p_i^{n_i} - 1).\]

Since (2) would reduce for \(k = 1\) to \(2p^n + 3 = p^{n-1}\), it is clear that \(k > 2\). Then note that if \(p_1 = 2\), the left side of (2) is odd whereas the right side is even, and so \(p_1 > 3\). Also from (2) it follows that if \(p_1 = 3\), then \(n_1 = 2\) or 1, and in all other cases \(n_1 = 1\).

Now if \(k > 3\), it is easy to show that the right-hand side of (2) is greater than \(p_2^3 \prod^k_1 p_i^{n_i}\) and so exceeds the left-hand side, and if \(k = 2\) with \(p_1 = 3\) and \(n_1 = 2\), the right side is \(3p_2^2 + 78\) which again is always greater than the left-hand side.

In the only remaining case \(k = 2\) and \(n_1 = n_2 = 1\), so (2) reduces to \(2p_1p_2 + 3 = p_1^2 + p_2^2 - 1\), that is \((p_1 - p_2)^2 = 4\), and we conclude that \(n = p_1p_2\) with \(p_1 - p_2 = 2\).

We now generalize (1) to

\[(*) \quad (n - 1)^2 - \sigma(n)\phi(n) = m^2\]

for any integer \(m\). It is easy to check that

Theorem 2. If \(n = p_1p_2\) with \(p_1, p_2\) primes such that \(p_1 - p_2 = m\), then \(n\) satisfies (*).

Received December 4, 1980.

1980 Mathematics Subject Classification. Primary 10B99; Secondary 10A99.

© 1981 American Mathematical Society

0025-5718/81/0000-0173/$02.25

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
We will call the \(n \) of Theorem 2 the standard solution of (\(\ast \)), and we will say that \(m \) is a \(*\)-number if (\(\ast \)) has only the standard solution, that is if (\(\ast \)) characterizes those \(n \) which are products of two primes differing by the fixed integer \(m \). Thus Theorem 1 states that 2 is a \(*\)-number.

Theorem 3. For a given prime \(p \), if \(2p - 1 \) is also prime, then \(n = p^k(2p - 1) \) satisfies (\(\ast \)) for \(m = p^k - 1 \), so \(m = p^k - 1 \) is not a \(*\)-number for all \(k > 2 \). Similarly (\(\ast \)) has a solution \(n = p^k(2p + 1) \) for \(m = p^k + 1 \) whenever \(p \) and \(2p + 1 \) are prime.

Proof. If \(2p \pm 1 \) is prime, then for \(n = p^k(2p \pm 1) \) the left-hand side of (\(\ast \)) becomes

\[
(p^k(2p \pm 1) - 1)^2 - (p^{2k} - p^{k-1})(4p^2 \pm 4p) = (p^k \pm 1)^2.
\]

Corollary. There are an infinite number of odd non \(*\)-numbers and an infinite number of even non \(*\)-numbers.

Proof. This is clear since we have as non \(*\)-numbers \(2^k - 1 \) and \(2^k + 1 \), and also \(3^k - 1 \) and \(3^k + 1 \) for all \(k > 2 \). Note: There are many other sequences of non \(*\)-numbers such as \(7^k - 1 \) or \(11^k + 1 \). Also note that except for 2 and 3 it is impossible for both \(2p - 1 \) and \(2p + 1 \) to be prime.

For primes \(p_1 < p_2 < \cdots < p_k \) let

\[
f = \left(\prod_{i=1}^{k} p_i^{n_i} - 1 \right)^2 - \prod_{i=1}^{k} (p_i^{2n_i} - p_i^{n_i-1}),
\]

so that \(n = \prod_{i=1}^{k} p_i^{n_i} \) is a solution of (\(\ast \)) if and only if \(\sqrt{f} = m \) is an integer.

The next two propositions gave some limitations on the type of solutions that (\(\ast \)) may have.

Proposition 1. If \(p \) is a prime such that \(p \mid m \) then the Mersenne number \(M_p = 2^p - 1 \) is not a solution of (\(\ast \)).

Proof. Let \(n = M_p \) be a solution of (\(\ast \)). For a prime \(q \mid M_p \), we have \(2^p \equiv 1 \) (mod \(q \)) so \(q \equiv 1 \) (mod \(p \)). But then any \(q^{2r} - q^{r-1} \equiv 0 \) (mod \(p \)) and also \(M_p - 1 \equiv 0 \) (mod \(p \)). Thus from (3) we have the contradiction \(p^2 \mid f \).

Proposition 2. If \(p < q \) are primes, then \(n = pq' \) is not a solution of (\(\ast \)) for any \(r > 2 \) and any \(m \).

Proof. If \(n = pq' \) is a solution of (\(\ast \)), then since \(r > 2 \) we have \((q, m) = 1 \). Thus we can write \(m = q^h \pm \alpha \) for either \(h = 0 \) or \((h, q) = 1 \) with some \(t < 1 \), and some \(0 < \alpha < (q - 1)/2 \). Then \(\alpha^2 \equiv 1 \) (mod \(q \)), so \(\alpha^2 = 1 \) and (3) becomes

\[
q^{2r} - 2pq' + (p^2 - 1)q^{r-1} = q'h(q'h \pm 2).
\]

Case 1. \(q = 2, q = 3 \). Then, since \(p^2 - 1 = 3 \), it follows from (4) that \(t = r + 1 \). Thus (4) reduces to

\[
3^{r+1}h^2 \pm 2h - 3^{r-1} + 1 = 0.
\]

But the left side of this equation is positive for all \(h > 1 \) and is nonzero for \(h = 0 \). Thus no integral value of \(h \) satisfies (4), so \(m \) an integer is impossible.
Case 2. In all other cases, since \(q > p \), we have \(q \nmid (p^2 - 1) \) and so \(t = r - 1 \). Thus (4) becomes

\[
q^{t-1}h^2 + 2p - q^{t+1} + 2pq + 1 - p^2 = 0.
\]

Writing the left side of this equation \(F(h) \) we have, \(F(0) \neq 0 \), and clearly \(F(h) \) is an increasing function for all \(h > 1 \). Since \(q > p \), it is evident that \(F(q) > 0 \). But also

\[
F(q - 1) < q^{t-1}(q - 1)^2 + 2(q - 1) - q^{t+1} + 2pq + 1 - p^2
\]

\[
< q^{t-1}(3 - 2q) + p(2q - p) - 1
\]

\[
< q^{t-1}(3 - 2q + 2q - p) - 1 = q^{t-1}(3 - p) - 1 < 0.
\]

Thus \(F(h) \) has no integral zeros, so again \(m \) an integer is impossible.

Remark. The method of Theorem 1 can be used to show that, for certain values of \(m \), (\(\ast \)) has only the standard solution, so that \(m \) is a \(\ast \)-number. However, with increasing \(m \) the method rapidly becomes more complicated and must in any case be done one \(m \) at a time. The following propositions yield a much simpler method, namely that for any chosen limit \(L \) there is a systematic procedure by which all nonstandard solutions of (\(\ast \)) can be calculated for all \(m < L \). Eliminating all such \(m \) then leaves those \(\ast \)-numbers that are \(< L \).

The following are clear from (3).

Proposition 3. If \(k = 1 \), then \(f < 0 \) so (\(\ast \)) is impossible.

Proposition 4. If \(k > 2 \), then \(f \) is odd if and only if \(n \) is even.

Proposition 5. In all cases \(f \) is an increasing function of \(n_j \) for all \(j \).

Proof. We take the partial of \(f \) with respect to \(n_j \) and check directly in the case \(j = 1 \), \(k = 2 \), \(n_2 = 1 \) that the partial derivative is greater than \(p^{n_j-1}\log p_j(p_1 - p_2)^2 \).

In all other cases we examine the effect on the partial of replacing \(p_j^{2n_j} - p_i^{n_i-1} \) by \(p_i^{2n_i} \) for all \(i > 2 \) and (when \(j > 2 \)) replacing \(2p_j^{2n_j} - p_j^{n_j-1} \) by \(2p_j^{2n_j} \). It is then immediately clear that in all cases the partial derivative is positive.

Proposition 6. In the case \(k = 2 \) and \(n_1 = 1 \), \(f \) is an increasing function of \(p_1 \) but is an increasing function of \(p_2 \). In all other cases \(f \) is an increasing function of \(p_j \) for all \(j \).

Proof. When \(k = 2 \) and \(n_1 = 1 \), we find that the partial derivative \(f_{p_1} = 2p_2^{2n_2 - 1}(p_1 - p_2) < 0 \). To show that all other partials are positive we examine (for the cases \(k > 3 \) or \(k = 2 \) and \(j > 2 \)) the effect of replacing in \(f_{p_j} \) the term \(2n_jp_j^{2n_j - 1} - (n_j - 1)p_j^{n_j - 2} \) by \(2n_jp_j^{2n_j - 1} \) and replacing \(p_i^{2n_i} - p_i^{n_i-1} \) by \(p_i^{2n_i} \) for all \(i > 2 \) when \(j > 2 \), and for all \(i > 3 \) when \(j = 1 \) and \(k > 3 \). Finally in the case \(k = 2 \), \(n_1 > 2 \) we show directly that

\[
f_{p_1} > p_1^{n_1-2}p_2^{n_2-1}[4p_1^3 + p_2^2 - 4p_1p_2] > p_1^{n_1-2}p_2^{n_2-1}(2p_1 - p_2)^2.
\]

Proposition 7. \(f \) increases with \(k \) in the sense that if \(p \) is a prime not dividing \(a \) then \(f(ap^h) > f(a) \) for all \(h > 1 \).

Proof. Let \(b = \sigma(a)\phi(a) \). Then

\[
f(ap^h) = (ap^h - 1)^2 - b(p^{2h} - p^{h-1}) > p^{2h}f(a).
\]
The Computations. In calculating nonstandard solutions \(n = \prod p_i^{n_i} \) of (*) it follows from Propositions 3 and 4 that \(k > 2 \) and if \(k = 2 \) we do not need to consider the case \(n_1 = 1 \). Therefore from Propositions 5–7, we can regard \(f \) as always an increasing function in all variables. Thus, for any upper limit \(L \), there is clearly a systematic way of calculating for all \(\sqrt{f} < L \), namely for each increasing \(k \) (starting with \(k = 2 \)) and each increasing choice of the \(n_i \) (starting with \(n_1 = 2 \) and \(n_2 = 1 \)) we calculate for all \(p_1 < p_2 < \cdots < p_k \) in each case up until \(\sqrt{f} > L \), recording all those \(n \) in which \(m = \sqrt{f} \) is an integer.

Note that in the following table we have separated the solutions for odd and even \(m \) since the odd \(m \) appear to have somewhat different properties. In fact, to say \(m \) is an odd \(*\)-number is simply to say that \(m + 2 \) is prime and (*) has the sole solution \(n = 2(m + 2) \) or that (*) has no solutions at all.

The following is the set of all nonstandard solutions of (*) for \(m < 1000 \). Note that the solutions marked \# are those guaranteed by Theorem 3.

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>m</th>
<th>n</th>
<th>m</th>
<th>n</th>
<th>m</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2\cdot 3 #</td>
<td>37</td>
<td>2\cdot 3</td>
<td>163</td>
<td>2\cdot 3 #</td>
<td>511</td>
<td>2\cdot 3 #</td>
</tr>
<tr>
<td>5</td>
<td>2\cdot 5 #</td>
<td>49</td>
<td>2\cdot 5</td>
<td>179</td>
<td>2\cdot 3 \cdot 19</td>
<td>513</td>
<td>2\cdot 5 #</td>
</tr>
<tr>
<td>7</td>
<td>2\cdot 3 #</td>
<td>55</td>
<td>2\cdot 3</td>
<td>185</td>
<td>2\cdot 3 \cdot 19</td>
<td>577</td>
<td>2\cdot 3 \cdot 19</td>
</tr>
<tr>
<td>9</td>
<td>2\cdot 5 #</td>
<td>61</td>
<td>2\cdot 3 \cdot 11</td>
<td>249</td>
<td>2\cdot 5 #</td>
<td>639</td>
<td>2\cdot 5 \cdot 11</td>
</tr>
<tr>
<td>13</td>
<td>2\cdot 11</td>
<td>63</td>
<td>2\cdot 3 #</td>
<td>255</td>
<td>2\cdot 8 \cdot 3 #</td>
<td>739</td>
<td>2\cdot 3 \cdot 131</td>
</tr>
<tr>
<td>15</td>
<td>2\cdot 3 #</td>
<td>65</td>
<td>2\cdot 6 \cdot 5 #</td>
<td>257</td>
<td>2\cdot 6 \cdot 5 #</td>
<td>813</td>
<td>2\cdot 7 \cdot 113</td>
</tr>
<tr>
<td>17</td>
<td>2\cdot 5 #</td>
<td>99</td>
<td>2\cdot 5 \cdot 19</td>
<td>303</td>
<td>2\cdot 4 \cdot 109</td>
<td>877</td>
<td>2\cdot 13 \cdot 67</td>
</tr>
<tr>
<td>19</td>
<td>2\cdot 3 #</td>
<td>127</td>
<td>2\cdot 7 \cdot 3 #</td>
<td>321</td>
<td>2\cdot 5 \cdot 61</td>
<td>897</td>
<td>2\cdot 7 \cdot 113</td>
</tr>
<tr>
<td>23</td>
<td>2\cdot 3 \cdot 13</td>
<td>129</td>
<td>2\cdot 7 \cdot 5 #</td>
<td>357</td>
<td>2\cdot 2 \cdot 13 \cdot 19</td>
<td>921</td>
<td>2\cdot 3 \cdot 5 \cdot 73</td>
</tr>
<tr>
<td>23</td>
<td>2\cdot 3 \cdot 7</td>
<td>145</td>
<td>2\cdot h \cdot 53</td>
<td>413</td>
<td>2\cdot 2 \cdot 3 \cdot 29</td>
<td>955</td>
<td>2\cdot 2 \cdot 3 \cdot 67</td>
</tr>
<tr>
<td>31</td>
<td>2\cdot 3 #</td>
<td>157</td>
<td>2\cdot 2 \cdot 113</td>
<td>437</td>
<td>2\cdot 2 \cdot 311</td>
<td>993</td>
<td>2\cdot 5 \cdot 7 \cdot 23</td>
</tr>
<tr>
<td>33</td>
<td>2\cdot 5 #</td>
<td>159</td>
<td>2\cdot 5 \cdot 41</td>
<td>487</td>
<td>2\cdot 3 \cdot 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. The only values of \(m < 5000 \) for which (*) has a solution with \(k = 4 \) are:

\[
\begin{align*}
m & \quad n \\
1744 & \quad 3.5.7.41 \\
3216 & \quad 5.11.13.19 \\
4516 & \quad 3.5.19.41
\end{align*}
\]
PRIMES DIFFERING BY A FIXED INTEGER

EVEN

<table>
<thead>
<tr>
<th>(m)</th>
<th>(n)</th>
<th>(m)</th>
<th>(n)</th>
<th>(m)</th>
<th>(n)</th>
<th>(m)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(3^2 \cdot 5) #</td>
<td>172</td>
<td>(3^2 \cdot 7.11)</td>
<td>414</td>
<td>(5^2 \cdot 7.13)</td>
<td>694</td>
<td>(3 \cdot 5.11)²</td>
</tr>
<tr>
<td>10</td>
<td>(3^2 \cdot 7) #</td>
<td>176</td>
<td>(3.5.31)</td>
<td>432</td>
<td>(7.17.23)</td>
<td>708</td>
<td>(7.23.29)</td>
</tr>
<tr>
<td>26</td>
<td>(5^2 \cdot 11) #</td>
<td>226</td>
<td>(5^3 \cdot 43)</td>
<td>438</td>
<td>(19^2 \cdot 79)</td>
<td>728</td>
<td>(3^6 \cdot 5) #</td>
</tr>
<tr>
<td>26</td>
<td>(3^3 \cdot 5) #</td>
<td>228</td>
<td>(7.11.17)</td>
<td>440</td>
<td>(3^2 \cdot 257)</td>
<td>730</td>
<td>(3^6 \cdot 7) #</td>
</tr>
<tr>
<td>28</td>
<td>(3^3 \cdot 7) #</td>
<td>230</td>
<td>(11^2 \cdot 71)</td>
<td>440</td>
<td>(7^3 \cdot 47)</td>
<td>732</td>
<td>(17^2 \cdot 181)</td>
</tr>
<tr>
<td>40</td>
<td>(3.5.7)</td>
<td>240</td>
<td>(5.13.17)</td>
<td>450</td>
<td>(5.7.53)</td>
<td>744</td>
<td>(13.19.31)</td>
</tr>
<tr>
<td>46</td>
<td>(5^2 \cdot 23)</td>
<td>242</td>
<td>(3^4 \cdot 7)</td>
<td>456</td>
<td>(5.19.23)</td>
<td>760</td>
<td>(3.7.101)</td>
</tr>
<tr>
<td>48</td>
<td>(7^2 \cdot 13) #</td>
<td>242</td>
<td>(3^5 \cdot 5) #</td>
<td>472</td>
<td>(11^2 \cdot 149)</td>
<td>762</td>
<td>(11.17.37)</td>
</tr>
<tr>
<td>62</td>
<td>(7^2 \cdot 23)</td>
<td>244</td>
<td>(3^5 \cdot 7) #</td>
<td>476</td>
<td>(5^3 \cdot 97)</td>
<td>796</td>
<td>(3^5 \cdot 13)</td>
</tr>
<tr>
<td>78</td>
<td>(7^2 \cdot 31)</td>
<td>246</td>
<td>(5.7.29)</td>
<td>510</td>
<td>(7^2 \cdot 199)</td>
<td>804</td>
<td>(5.11.67)</td>
</tr>
<tr>
<td>80</td>
<td>(3^4 \cdot 5) #</td>
<td>258</td>
<td>(7^2 \cdot 103)</td>
<td>516</td>
<td>(5.11.43)</td>
<td>824</td>
<td>(11^2 \cdot 257)</td>
</tr>
<tr>
<td>82</td>
<td>(3^3 \cdot 29)</td>
<td>288</td>
<td>(7.13.19)</td>
<td>530</td>
<td>(23^2 . 47) #</td>
<td>842</td>
<td>(29^2 \cdot 59) #</td>
</tr>
<tr>
<td>82</td>
<td>(3^4 \cdot 7) #</td>
<td>296</td>
<td>(5^2 \cdot 137)</td>
<td>530</td>
<td>(3^2 \cdot 5.43)</td>
<td>844</td>
<td>(5.19.43)</td>
</tr>
<tr>
<td>96</td>
<td>(5.7.11)</td>
<td>320</td>
<td>(11^2 \cdot 101)</td>
<td>540</td>
<td>(7^3 \cdot 67)</td>
<td>870</td>
<td>(11^2 \cdot 271)</td>
</tr>
<tr>
<td>118</td>
<td>(3^2 \cdot 71)</td>
<td>328</td>
<td>(3.17.19)</td>
<td>620</td>
<td>(3^3 \cdot 11.13)</td>
<td>904</td>
<td>(3.29.31)</td>
</tr>
<tr>
<td>122</td>
<td>(11^2 \cdot 23) #</td>
<td>342</td>
<td>(7^2 \cdot 11)²</td>
<td>626</td>
<td>(5^4 \cdot 11) #</td>
<td>926</td>
<td>(5^2 \cdot 419)</td>
</tr>
<tr>
<td>126</td>
<td>(5^3 \cdot 11) #</td>
<td>342</td>
<td>(7^3 \cdot 13) #</td>
<td>648</td>
<td>(13.17.29)</td>
<td>926</td>
<td>(3^2 \cdot 5^2 \cdot 19)</td>
</tr>
<tr>
<td>142</td>
<td>(3.7 \cdot 19)</td>
<td>354</td>
<td>(5^2 \cdot 163)</td>
<td>660</td>
<td>(11.19.29)</td>
<td>932</td>
<td>(7^3 \cdot 131)</td>
</tr>
<tr>
<td>144</td>
<td>(11^2 \cdot 37)</td>
<td>358</td>
<td>(17^2 \cdot 71)</td>
<td>662</td>
<td>(13^2 \cdot 191)</td>
<td>960</td>
<td>(31^2 \cdot 61) #</td>
</tr>
<tr>
<td>148</td>
<td>(3.11 \cdot 13)</td>
<td>360</td>
<td>(19^2 \cdot 37) #</td>
<td>690</td>
<td>(13^2 \cdot 199)</td>
<td>990</td>
<td>(23^2 \cdot 199)</td>
</tr>
<tr>
<td>166</td>
<td>(11^2 \cdot 47)</td>
<td>408</td>
<td>(11^2 \cdot 13.23)</td>
<td>692</td>
<td>(7.13.47)</td>
<td>1000</td>
<td>(3^3 \cdot 7.29)</td>
</tr>
</tbody>
</table>

Department of Mathematics and Statistics
University of Nebraska
Lincoln, Nebraska 68488
475-B Cook Drive
Redstone Arsenal, Alabama 35808
