On the distribution of pseudoprimes

Author:
Carl Pomerance

Journal:
Math. Comp. **37** (1981), 587-593

MSC:
Primary 10A21; Secondary 10A20

DOI:
https://doi.org/10.1090/S0025-5718-1981-0628717-0

MathSciNet review:
628717

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the pseudoprime counting function. With

*x*, an improvement on the 1956 work of Erdös. We conjecture that .

**[1]**N. G. de Bruijn, "On the number of positive integers and free of prime factors . II,"*Nederl. Akad. Wetensch. Proc. Ser. A*, v. 69, 1966, pp. 239-247.**[2]**E. R. Canfield, P. Erdös & C. Pomerance, "On a problem of Oppenheim concerning "Factorisatio Numerorum","*J. Number Theory*. (To appear.) MR**1876176 (2002j:11012)****[3]**P. Erdös, "On pseudoprimes and Carmichael numbers,"*Publ. Math. Debrecen*, v. 4, 1956, pp. 201-206. MR**0079031 (18:18e)****[4]**P. Erdös, "On the sum ,"*Israel J. Math.*, v. 9, 1971, pp. 43-48. MR**0269613 (42:4508)****[5]**C. Pomerance, "Popular values of Euler's function,"*Mathematika*, v. 27, 1980, pp. 84-89. MR**581999 (81k:10076)****[6]**C. Pomerance, "A new lower bound for the pseudoprime counting function,"*Illinois J. Math.*(To appear.) MR**638549 (83h:10012)****[7]**C. Pomerance, J. L. Selfridge & S. S. Wagstaff, Jr., "The pseudoprimes to ,"*Math. Comp.*, v. 35, 1980, pp. 1003-1026. MR**572872 (82g:10030)****[8]**R. A. Rankin, "The difference between consecutive prime numbers,"*J. London Math. Soc.*, v. 13, 1938, pp. 242-247.

Retrieve articles in *Mathematics of Computation*
with MSC:
10A21,
10A20

Retrieve articles in all journals with MSC: 10A21, 10A20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1981-0628717-0

Keywords:
Pseudoprime,
Carmichael number,
Euler's function

Article copyright:
© Copyright 1981
American Mathematical Society