On the distribution of pseudoprimes

Author:
Carl Pomerance

Journal:
Math. Comp. **37** (1981), 587-593

MSC:
Primary 10A21; Secondary 10A20

DOI:
https://doi.org/10.1090/S0025-5718-1981-0628717-0

MathSciNet review:
628717

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the pseudoprime counting function. With

*x*, an improvement on the 1956 work of Erdös. We conjecture that .

**[1]**N. G. de Bruijn, "On the number of positive integers and free of prime factors . II,"*Nederl. Akad. Wetensch. Proc. Ser. A*, v. 69, 1966, pp. 239-247.**[2]**E. Rodney Canfield and Carl Pomerance,*On the problem of uniqueness for the maximum Stirling number(s) of the second kind*, Integers**2**(2002), A1, 13. MR**1876176****[3]**P. Erdös,*On pseudoprimes and Carmichael numbers*, Publ. Math. Debrecen**4**(1956), 201–206. MR**0079031****[4]**P. Erdős,*On the sum ∑_{𝑑2ⁿ-1}𝑑⁻¹*, Israel J. Math.**9**(1971), 43–48. MR**0269613**, https://doi.org/10.1007/BF02771618**[5]**Carl Pomerance,*Popular values of Euler’s function*, Mathematika**27**(1980), no. 1, 84–89. MR**581999**, https://doi.org/10.1112/S0025579300009967**[6]**Carl Pomerance,*A new lower bound for the pseudoprime counting function*, Illinois J. Math.**26**(1982), no. 1, 4–9. MR**638549****[7]**Carl Pomerance, J. L. Selfridge, and Samuel S. Wagstaff Jr.,*The pseudoprimes to 25⋅10⁹*, Math. Comp.**35**(1980), no. 151, 1003–1026. MR**572872**, https://doi.org/10.1090/S0025-5718-1980-0572872-7**[8]**R. A. Rankin, "The difference between consecutive prime numbers,"*J. London Math. Soc.*, v. 13, 1938, pp. 242-247.

Retrieve articles in *Mathematics of Computation*
with MSC:
10A21,
10A20

Retrieve articles in all journals with MSC: 10A21, 10A20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1981-0628717-0

Keywords:
Pseudoprime,
Carmichael number,
Euler's function

Article copyright:
© Copyright 1981
American Mathematical Society