Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Approximation results for orthogonal polynomials in Sobolev spaces


Authors: C. Canuto and A. Quarteroni
Journal: Math. Comp. 38 (1982), 67-86
MSC: Primary 41A10
MathSciNet review: 637287
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We analyze the approximation properties of some interpolation operators and some $ L_\omega ^2$-orthogonal projection operators related to systems of polynomials which are orthonormal with respect to a weight function $ \omega ({x_1}, \ldots ,{x_d})$, $ d \geqslant 1$. The error estimates for the Legendre system and the Chebyshev system of the first kind are given in the norms of the Sobolev spaces $ H_\omega ^s$. These results are useful in the numerical analysis of the approximation of partial differential equations by spectral methods.


References [Enhancements On Off] (What's this?)

  • [1] Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR 0450957
  • [2] Antonio Avantaggiati, Spazi di Sobolev con peso ed alcune applicazioni, Boll. Un. Mat. Ital. (5) 13A (1976), no. 1, 1–52 (Italian). MR 0423064
  • [3] I. Babuška, B. A. Szabö & I. N. Katz, The P-Version of the Finite Element Method, Report of the Washington University, St. Louis, 1979.
  • [4] Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223. MR 0482275
  • [5] Kenneth P. Bube, 𝐶^{𝑚} convergence of trigonometric interpolants, SIAM J. Numer. Anal. 15 (1978), no. 6, 1258–1268. MR 512698, 10.1137/0715086
  • [6] Paul L. Butzer and Hubert Berens, Semi-groups of operators and approximation, Die Grundlehren der mathematischen Wissenschaften, Band 145, Springer-Verlag New York Inc., New York, 1967. MR 0230022
  • [7] P. L. Butzer & R. L. Nessel, Fourier Analysis and Approximation, Vol. 1, Birkhäuser-Verlag, Basel-Stuttgart, 1971.
  • [8] A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. MR 0167830
  • [9] Claudio Canuto and Alfio Quarteroni, Propriétés d’approximation dans les espaces de Sobolev de systèmes de polynômes orthogonaux, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 19, A925–A928 (French, with English summary). MR 580174
  • [10] C. Canuto and A. Quarteroni, Spectral and pseudospectral methods for parabolic problems with nonperiodic boundary conditions, Calcolo 18 (1981), no. 3, 197–217. MR 647825, 10.1007/BF02576357
  • [11] C. Canuto and A. Quarteroni, Error estimates for spectral and pseudospectral approximations of hyperbolic equations, SIAM J. Numer. Anal. 19 (1982), no. 3, 629–642. MR 656477, 10.1137/0719044
  • [12] Philip J. Davis and Philip Rabinowitz, Methods of numerical integration, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers] New York-London, 1975. Computer Science and Applied Mathematics. MR 0448814
  • [13] David Gottlieb and Steven A. Orszag, Numerical analysis of spectral methods: theory and applications, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1977. CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26. MR 0520152
  • [14] Heinz-Otto Kreiss and Joseph Oliger, Comparison of accurate methods for the integration of hyperbolic equations, Tellus 24 (1972), 199–215 (English, with Russian summary). MR 0319382
  • [15] Heinz-Otto Kreiss and Joseph Oliger, Stability of the Fourier method, SIAM J. Numer. Anal. 16 (1979), no. 3, 421–433. MR 530479, 10.1137/0716035
  • [16] Alois Kufner, Oldřich John, and Svatopluk Fučík, Function spaces, Noordhoff International Publishing, Leyden; Academia, Prague, 1977. Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis. MR 0482102
  • [17] J. L. Lions, ``Théorèmes de traces et d'interpolation (I) ... (V),'' (I), (II), Ann. Sc. Norm. Sup. Pisa, v. 13, 1959, pp. 389-403; v. 14, 1960, pp. 317-331; (III) J. Liouville, v. 42, 1963, pp. 196-203; (IV) Math. Ann., v. 151, 1963, pp. 42-56; (V) An. Acad. Brasil. Ciênc., v. 35, 1963, pp. 1-110.
  • [18] J. L. Lions & E. Magenes, Non Homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, Berlin and New York, 1972.
  • [19] J.-L. Lions and J. Peetre, Sur une classe d’espaces d’interpolation, Inst. Hautes Études Sci. Publ. Math. 19 (1964), 5–68 (French). MR 0165343
  • [20] Y. Maday and A. Quarteroni, Spectral and pseudospectral aproximations of the Navier-Stokes equations, SIAM J. Numer. Anal. 19 (1982), no. 4, 761–780. MR 664883, 10.1137/0719053
  • [21] Y. Maday & A. Quarteroni, ``Approximation of Burgers' equation by pseudo-spectral methods,'' Math. Comp. (To appear.)
  • [22] Yvon Maday and Alfio Quarteroni, Legendre and Chebyshev spectral approximations of Burgers’ equation, Numer. Math. 37 (1981), no. 3, 321–332. MR 627106, 10.1007/BF01400311
  • [23] B. Mercier, ``Stabilité et convergence des méthodes spectrales pour des problèmes d'évolution linéaires non périodiques. Application à l'équation d'advection,'' R.A.I.R.O. Anal. Numér. (To appear).
  • [24] S. M. Nikol′skiĭ, Approximation of functions of several variables and imbedding theorems, Springer-Verlag, New York-Heidelberg., 1975. Translated from the Russian by John M. Danskin, Jr.; Die Grundlehren der Mathematischen Wissenschaften, Band 205. MR 0374877
  • [25] Steven A. Orszag, Numerical simulation of incompressible flows within simple boundaries. I. Galerkin (spectral) representations, Studies in Appl. Math. 50 (1971), 293–327. MR 0305727
  • [26] Steven A. Orszag, Numerical simulation of incompressible flows within simple boundaries: Accuracy, J. Fluid Mech. 49 (1971), 75–112. MR 0315915
  • [27] Joseph E. Pasciak, Spectral and pseudospectral methods for advection equations, Math. Comp. 35 (1980), no. 152, 1081–1092. MR 583488, 10.1090/S0025-5718-1980-0583488-0
  • [28] J. Peetre, ``Interpolation functions and Banach couples,'' Actes Congrès Internat. Math., 1970, v. 2, 1971, pp. 173-190.
  • [29] G. Sansone, Orthogonal functions, Revised English ed. Translated from the Italian by A. H. Diamond; with a foreword by E. Hille. Pure and Applied Mathematics, Vol. IX, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1959. MR 0103368
  • [30] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23, Amer. Math. Soc., Providence, R. I., 1939.
  • [31] Hans Triebel, Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, vol. 18, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503903
  • [32] A. Zygmund, Trigonometric series: Vols. I, II, Second edition, reprinted with corrections and some additions, Cambridge University Press, London-New York, 1968. MR 0236587

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 41A10

Retrieve articles in all journals with MSC: 41A10


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1982-0637287-3
Article copyright: © Copyright 1982 American Mathematical Society