Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Composite exponential approximations


Author: Arieh Iserles
Journal: Math. Comp. 38 (1982), 99-112
MSC: Primary 65L05
DOI: https://doi.org/10.1090/S0025-5718-1982-0637289-7
MathSciNet review: 637289
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Composite Exponential Approximations (CEA) arise in a natural way when one investigates the stability and order properties of a combination of several methods for the numerical solution of ordinary differential equations, sequentially implemented with different step-lengths. Some general results on the order, acceptability and exponential fitting properties of CEA are derived. The composite Padé approximations and N-approximations are explored in detail.


References [Enhancements On Off] (What's this?)

  • [1] R. Alexander, ``Diagonally implicit Runge-Kutta methods for stiff O.D.E.'s,'' SIAM J. Numer. Anal., v. 14, 1977, pp. 1006-1021. MR 0458890 (56:17089)
  • [2] J. Donelson & E. Hansen, ``Cyclic composite multistep predictor-corrector methods,'' SIAM J. Numer. Anal., v. 8, 1971, pp. 137-157. MR 0282531 (43:8242)
  • [3] B. L. Ehle, ``A-stable methods and Padé approximations to the exponential,'' SIAM J. Math. Anal., v. 4, 1973, pp. 671-680. MR 0331787 (48:10119)
  • [4] B. L. Ehle, Some Results on Exponential Approximation and Stiff Equations, Report 77, Dept. of Math., Univ. of Victoria, Canada, 1974.
  • [5] B. L. Ehle & Z. Picel, 'Two-parameter, arbitrary order, exponential approximations for stiff equations,'' Math. Comp., v. 29, 1975, pp. 501-511. MR 0375737 (51:11927)
  • [6] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, N. J., 1971. MR 0315898 (47:4447)
  • [7] H. Greenspan, W. Hafner & M. Ribaric, ``On varying stepsizes in numerical integration of first order differential equations,'' Numer. Math., v. 7, 1965, pp. 286-291. MR 0231536 (37:7089)
  • [8] A. Iserles, ``A-stability and dominating pairs,'' Math. Comp., v. 32, 1978, pp. 19-33. MR 0464595 (57:4522)
  • [9] A. Iserles, ``Nonexponential fitting techniques for numerical solution of stiff equations,'' Utilitas Math., v. 17, 1980, pp. 276-302. MR 583147 (82c:65046)
  • [10] A. Iserles, ``On the generalized Padé approximations to the exponential function,'' SIAM J. Numer. Anal., v. 16, 1979, pp. 631-636. MR 537277 (80i:41013)
  • [11] R. Jeltsch, ``Stiff stabillity and its relation to $ {A_0}$- and $ A(0)$-stability,'' SIAM J. Numer. Anal., v. 13, 1976, pp. 8-17. MR 0411174 (53:14913)
  • [12] A. M. Krall, ``The root locus method: A survey,'' SIAM Rev., v. 12, 1970, pp. 64-72. MR 0260452 (41:5078)
  • [13] B. Lindberg, ``Characterization of optimal stepsize sequences for methods for stiff differential equations,'' SIAM J. Numer. Anal., v. 14, 1977, pp. 859-887. MR 0519728 (58:24961)
  • [14] W. Liniger & R. A. Willoughby, ``Efficient integration methods for stiff systems of ordinary differential equations,'' SIAM J. Numer. Anal., v. 7, 1970, pp. 47-66. MR 0260181 (41:4809)
  • [15] D. Morrison, ``Optimal mesh size in the numerical integration of an ordinary differential equation,'' J. Assoc. Comput. Mach., v. 9, 1962, pp. 98-103. MR 0134854 (24:B906)
  • [16] S. P. Nørsett, Semi-Explicit Runge-Kutta Methods, Report 6, Dept. of Math., Univ. of Trondheim, Norway, 1974.
  • [17] S. P. Nørsett, Multiple Padé Approximations to the Exponential Function, Report 4, Dept. of Math., Univ. of Trondheim, Norway, 1974; (appeared in an abridged form as ``Restricted Padé approximations to the exponential functions,'' SIAM J. Numer. Anal., v. 15, 1978, pp. 1008-1029). MR 0510733 (58:23265)
  • [18] S. P. Nørsett & A. Wolfbrandt, ``Attainable order of rational approximations to the exponential function with only real poles,'' BIT, v. 17, 1977, pp. 200-208. MR 0447900 (56:6210)
  • [19] E. D. Rainville, Special Functions, Macmillan, New York, 1967. MR 0107725 (21:6447)
  • [20] H. J. Stetter, Analysis of Discretization Methods for Ordinary Differential Equations, Springer-Verlag, Berlin, 1973. MR 0426438 (54:14381)
  • [21] R. S. Varga, ``On higher order stable implicit methods for solving parabolic partial differential equations,'' J. Math. Phys., 1961, pp. 220-231. MR 0140191 (25:3613)
  • [22] G. Wanner, E. Hairer & S. P. Nørsett, ``Order stars and stability theorems,'' BIT, v. 18, 1978, pp. 475-489. MR 520756 (81b:65070)
  • [23] J. Wimp, ``On zeros of a confluent hypergeometric function,'' Proc. Amer. Math. Soc., v. 16, 1965, pp. 281-283. MR 0173793 (30:4001)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65L05

Retrieve articles in all journals with MSC: 65L05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1982-0637289-7
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society