Composite exponential approximations

Author:
Arieh Iserles

Journal:
Math. Comp. **38** (1982), 99-112

MSC:
Primary 65L05

DOI:
https://doi.org/10.1090/S0025-5718-1982-0637289-7

MathSciNet review:
637289

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Composite Exponential Approximations (CEA) arise in a natural way when one investigates the stability and order properties of a combination of several methods for the numerical solution of ordinary differential equations, sequentially implemented with different step-lengths. Some general results on the order, acceptability and exponential fitting properties of CEA are derived. The composite Padé approximations and *N*-approximations are explored in detail.

**[1]**R. Alexander, ``Diagonally implicit Runge-Kutta methods for stiff O.D.E.'s,''*SIAM J. Numer. Anal.*, v. 14, 1977, pp. 1006-1021. MR**0458890 (56:17089)****[2]**J. Donelson & E. Hansen, ``Cyclic composite multistep predictor-corrector methods,''*SIAM J. Numer. Anal.*, v. 8, 1971, pp. 137-157. MR**0282531 (43:8242)****[3]**B. L. Ehle, ``*A*-stable methods and Padé approximations to the exponential,''*SIAM J. Math. Anal.*, v. 4, 1973, pp. 671-680. MR**0331787 (48:10119)****[4]**B. L. Ehle,*Some Results on Exponential Approximation and Stiff Equations*, Report 77, Dept. of Math., Univ. of Victoria, Canada, 1974.**[5]**B. L. Ehle & Z. Picel, 'Two-parameter, arbitrary order, exponential approximations for stiff equations,''*Math. Comp.*, v. 29, 1975, pp. 501-511. MR**0375737 (51:11927)****[6]**C. W. Gear,*Numerical Initial Value Problems in Ordinary Differential Equations*, Prentice-Hall, Englewood Cliffs, N. J., 1971. MR**0315898 (47:4447)****[7]**H. Greenspan, W. Hafner & M. Ribaric, ``On varying stepsizes in numerical integration of first order differential equations,''*Numer. Math.*, v. 7, 1965, pp. 286-291. MR**0231536 (37:7089)****[8]**A. Iserles, ``*A*-stability and dominating pairs,''*Math. Comp.*, v. 32, 1978, pp. 19-33. MR**0464595 (57:4522)****[9]**A. Iserles, ``Nonexponential fitting techniques for numerical solution of stiff equations,''*Utilitas Math.*, v. 17, 1980, pp. 276-302. MR**583147 (82c:65046)****[10]**A. Iserles, ``On the generalized Padé approximations to the exponential function,''*SIAM J. Numer. Anal.*, v. 16, 1979, pp. 631-636. MR**537277 (80i:41013)****[11]**R. Jeltsch, ``Stiff stabillity and its relation to - and -stability,''*SIAM J. Numer. Anal.*, v. 13, 1976, pp. 8-17. MR**0411174 (53:14913)****[12]**A. M. Krall, ``The root locus method:*A*survey,''*SIAM Rev.*, v. 12, 1970, pp. 64-72. MR**0260452 (41:5078)****[13]**B. Lindberg, ``Characterization of optimal stepsize sequences for methods for stiff differential equations,''*SIAM J. Numer. Anal.*, v. 14, 1977, pp. 859-887. MR**0519728 (58:24961)****[14]**W. Liniger & R. A. Willoughby, ``Efficient integration methods for stiff systems of ordinary differential equations,''*SIAM J. Numer. Anal.*, v. 7, 1970, pp. 47-66. MR**0260181 (41:4809)****[15]**D. Morrison, ``Optimal mesh size in the numerical integration of an ordinary differential equation,''*J. Assoc. Comput. Mach.*, v. 9, 1962, pp. 98-103. MR**0134854 (24:B906)****[16]**S. P. Nørsett,*Semi-Explicit Runge-Kutta Methods*, Report 6, Dept. of Math., Univ. of Trondheim, Norway, 1974.**[17]**S. P. Nørsett,*Multiple Padé Approximations to the Exponential Function*, Report 4, Dept. of Math., Univ. of Trondheim, Norway, 1974; (appeared in an abridged form as ``Restricted Padé approximations to the exponential functions,''*SIAM J. Numer. Anal.*, v. 15, 1978, pp. 1008-1029). MR**0510733 (58:23265)****[18]**S. P. Nørsett & A. Wolfbrandt, ``Attainable order of rational approximations to the exponential function with only real poles,''*BIT*, v. 17, 1977, pp. 200-208. MR**0447900 (56:6210)****[19]**E. D. Rainville,*Special Functions*, Macmillan, New York, 1967. MR**0107725 (21:6447)****[20]**H. J. Stetter,*Analysis of Discretization Methods for Ordinary Differential Equations*, Springer-Verlag, Berlin, 1973. MR**0426438 (54:14381)****[21]**R. S. Varga, ``On higher order stable implicit methods for solving parabolic partial differential equations,''*J. Math. Phys.*, 1961, pp. 220-231. MR**0140191 (25:3613)****[22]**G. Wanner, E. Hairer & S. P. Nørsett, ``Order stars and stability theorems,''*BIT*, v. 18, 1978, pp. 475-489. MR**520756 (81b:65070)****[23]**J. Wimp, ``On zeros of a confluent hypergeometric function,''*Proc. Amer. Math. Soc.*, v. 16, 1965, pp. 281-283. MR**0173793 (30:4001)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05

Retrieve articles in all journals with MSC: 65L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1982-0637289-7

Article copyright:
© Copyright 1982
American Mathematical Society