Composite exponential approximations

Author:
Arieh Iserles

Journal:
Math. Comp. **38** (1982), 99-112

MSC:
Primary 65L05

MathSciNet review:
637289

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Composite Exponential Approximations (CEA) arise in a natural way when one investigates the stability and order properties of a combination of several methods for the numerical solution of ordinary differential equations, sequentially implemented with different step-lengths. Some general results on the order, acceptability and exponential fitting properties of CEA are derived. The composite Padé approximations and *N*-approximations are explored in detail.

**[1]**Roger Alexander,*Diagonally implicit Runge-Kutta methods for stiff o.d.e.’s*, SIAM J. Numer. Anal.**14**(1977), no. 6, 1006–1021. MR**0458890****[2]**John Donelson III. and Eldon Hansen,*Cyclic composite multistep predictor-corrector methods*, SIAM J. Numer. Anal.**8**(1971), 137–157. MR**0282531****[3]**Byron L. Ehle,*𝐴-stable methods and Padé approximations to the exponential*, SIAM J. Math. Anal.**4**(1973), 671–680. MR**0331787****[4]**B. L. Ehle,*Some Results on Exponential Approximation and Stiff Equations*, Report 77, Dept. of Math., Univ. of Victoria, Canada, 1974.**[5]**Byron L. Ehle and Zdenek Picel,*Two-parameter, arbitrary order, exponential approximations for stiff equations*, Math. Comp.**29**(1975), 501–511. MR**0375737**, 10.1090/S0025-5718-1975-0375737-7**[6]**C. William Gear,*Numerical initial value problems in ordinary differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR**0315898****[7]**H. Greenspan, W. Hafner, and M. Ribarič,*On varying stepsize in numerical integration of first order differential equations*, Numer. Math.**7**(1965), 286–291. MR**0231536****[8]**Arieh Iserles,*𝐴-stability and dominating pairs*, Math. Comp.**32**(1978), no. 141, 19–33. MR**0464595**, 10.1090/S0025-5718-1978-0464595-0**[9]**Arieh Iserles,*Nonexponential fitting techniques for numerical solution of stiff equations*, Utilitas Math.**17**(1980), 276–302. MR**583147****[10]**Arieh Iserles,*On the generalized Padé approximations to the exponential function*, SIAM J. Numer. Anal.**16**(1979), no. 4, 631–636. MR**537277**, 10.1137/0716048**[11]**Rolf Jeltsch,*Stiff stability and its relation to 𝐴₀- and 𝐴(0)-stability*, SIAM J. Numer. Anal.**13**(1976), no. 1, 8–17. MR**0411174****[12]**Allan M. Krall,*The root locus method: A survey*, SIAM Rev.**12**(1970), 64–72. MR**0260452****[13]**Bengt Lindberg,*Characterization of optimal stepsize sequences for methods for stiff differential equations*, SIAM J. Numer. Anal.**14**(1977), no. 5, 859–887. MR**0519728****[14]**Werner Liniger and Ralph A. Willoughby,*Efficient integration methods for stiff systems of ordinary differential equations*, SIAM J. Numer. Anal.**7**(1970), 47–66. MR**0260181****[15]**D. Morrison,*Optimal mesh size in the numerical integration of an ordianry differential equation*, J. Assoc. Comput. Mach.**9**(1962), 98–103. MR**0134854****[16]**S. P. Nørsett,*Semi-Explicit Runge-Kutta Methods*, Report 6, Dept. of Math., Univ. of Trondheim, Norway, 1974.**[17]**Syvert P. Nørsett,*Restricted Padé approximations to the exponential function*, SIAM J. Numer. Anal.**15**(1978), no. 5, 1008–1029. MR**0510733****[18]**Syvert P. Nørsett and Arne Wolfbrandt,*Attainable order of rational approximations to the exponential function with only real poles*, Nordisk Tidskr. Informationsbehandling (BIT)**17**(1977), no. 2, 200–208. MR**0447900****[19]**Earl D. Rainville,*Special functions*, The Macmillan Co., New York, 1960. MR**0107725****[20]**Hans J. Stetter,*Analysis of discretization methods for ordinary differential equations*, Springer-Verlag, New York-Heidelberg, 1973. Springer Tracts in Natural Philosophy, Vol. 23. MR**0426438****[21]**Richard S. Varga,*On higher order stable implicit methods for solving parabolic partial differential equations*, J. Math. and Phys.**40**(1961), 220–231. MR**0140191****[22]**G. Wanner, E. Hairer, and S. P. Nørsett,*Order stars and stability theorems*, BIT**18**(1978), no. 4, 475–489. MR**520756**, 10.1007/BF01932026**[23]**Jet Wimp,*On the zeros of a confluent hypergeometric function*, Proc. Amer. Math. Soc.**16**(1965), 281–283. MR**0173793**, 10.1090/S0002-9939-1965-0173793-8

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05

Retrieve articles in all journals with MSC: 65L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1982-0637289-7

Article copyright:
© Copyright 1982
American Mathematical Society