Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Asymptotic error estimates for Gaussian quadrature formulas


Author: T. H. Charles Chen
Journal: Math. Comp. 38 (1982), 143-152
MSC: Primary 65D32; Secondary 41A55
DOI: https://doi.org/10.1090/S0025-5718-1982-0637292-7
MathSciNet review: 637292
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives derivative-free asymptotic error estimates for the Gaussian quadrature formula with the nonnegative weight function $ w(x)$ belonging to a certain class. Numerical examples are presented.


References [Enhancements On Off] (What's this?)

  • [1] W. Barrett, ``On the convergence of sequences of rational approximations to analytic functions of a certain class,'' J. Inst. Math. Appl., v. 7, 1971, pp. 308-323. MR 0293102 (45:2181)
  • [2] M. M. Chawla & M. K. Jain, ``Asymptotic error estimates for the Gauss quadrature formula,'' Math. Comp., v. 22, 1968, pp. 91-97. MR 0223094 (36:6143)
  • [3] P. Davis & P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York, 1975. MR 0448814 (56:7119)
  • [4] D. Elliott, ``The evaluation and estimation of the coefficients in the Chebyshev series expansion of a function,'' Math. Comp., v. 18, 1964, pp. 274-284. MR 0166903 (29:4176)
  • [5] G. Freud, ``Error estimates for Gauss-Jacobi quadrature formulae,'' Topics in Numerical Analysis (John J. H. Miller, Ed.), 1972, pp. 113-121. MR 0341817 (49:6563)
  • [6] I. S. Gradshteyn & I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New York, 1965.
  • [7] V. I. Krylov, Approximate Calculation of Integrals, Macmillan, New York, 1962. MR 0144464 (26:2008)
  • [8] R. Kumar, ``A class of quadrature formulas,'' Math. Comp., v. 28, 1974, pp. 769-778. MR 0373240 (51:9441)
  • [9] R. Kumar, ``Certain Gaussian quadratures,'' J. Inst. Math. Appl., v. 14, 1974, pp. 175-182. MR 0356452 (50:8922)
  • [10] R. Piessens & M. Branders, Tables of Gaussian Quadrature Formulas, University of Leuven, 1975.
  • [11] A. H. Stroud & D. Secrest, Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 0202312 (34:2185)
  • [12] G. SzeoÖ, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23, Amer. Math. Soc., Providence, R. I., 1975.
  • [13] B. Von Sydow, ``Error estimates for Gaussian quadrature formulas,'' Numer. Math., v. 29, 1977, pp. 59-64. MR 0471270 (57:11007)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D32, 41A55

Retrieve articles in all journals with MSC: 65D32, 41A55


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1982-0637292-7
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society