TABLE ERRATA

In Table II, on p. 661, the exponent of 2 modulo \(p = 3 \cdot 2^n + 1 \) for \(n = 41 \) should read 549755813888 = 2\(^{1649267441664} = 3 \cdot 2^n - 2\).

WILFRID KELLER

The number \(\pi_5 \) of primes of the form \(5 \cdot 2^n + 1 \) in the range \(1 < n < 1500 \) is 11, and not 12, as stated in the Table on p. 1334. See [1, p. 674], where all primes \(5 \cdot 2^n + 1 \) are given for \(1 < n < 2004 \).

WILFRID KELLER

In Table 1, on p. 1420, the value \(m = 1518 \) should be added for \(k = 15 \). Once this addition is made, the correctness of almost the whole table can be confirmed. Only in the cases of \(k = 27 \) and \(k = 29 \) has the listing of primes not been checked for being complete in the interval \(4000 < m < 8000 \).

WILFRID KELLER

Rechenzentrum der Universität Hamburg
Hamburg, Federal Republic of Germany

On p. 112 the seventh formula gives the integral of \(z^{1/2}/x \), where \(z = x + (a^2 + x^2)^{1/2} \), as

\[
2\sqrt{z} - \sqrt{\frac{a}{2}} \log \frac{a + z + \sqrt{2az}}{a + z - \sqrt{2az}} - \sqrt{2a} \tan^{-1} \frac{\sqrt{2az}}{a - z},
\]

whereas it should be

\[
2\sqrt{z} - \frac{1}{2} \sqrt{a} \log \frac{a + z + 2\sqrt{az}}{a + z - 2\sqrt{az}} - \sqrt{a} \tan^{-1} \frac{2\sqrt{az}}{a - z}.
\]
The integral given is actually that of the function
\[\frac{x\sqrt{z}}{a^2 + x^2}. \]
This error was discovered in the course of research into algorithms for performing such integrations automatically; see pp. 163–164 of [1] for further details.

J. H. Davenport

Emmanuel College
Cambridge, England