TABLE ERRATA

In Table II, on p. 661, the exponent of 2 modulo $p = 3 \cdot 2^n + 1$ for $n = 41$ should read $549755813888 = 2^{n-2}$ instead of $1649267441664 = 3 \cdot 2^{n-2}$.

WILFRID KELLER

The number π_5 of primes of the form $5 \cdot 2^n + 1$ in the range $1 < n < 1500$ is 11, and not 12, as stated in the Table on p. 1334. See [1, p. 674], where all primes $5 \cdot 2^n + 1$ are given for $1 < n < 2004$.

WILFRID KELLER

In Table 1, on p. 1420, the value $m = 1518$ should be added for $k = 15$. Once this addition is made, the correctness of almost the whole table can be confirmed. Only in the cases of $k = 27$ and $k = 29$ has the listing of primes not been checked for being complete in the interval $4000 < m < 8000$.

WILFRID KELLER

Rechenzentrum der Universität Hamburg
Hamburg, Federal Republic of Germany

On p. 112 the seventh formula gives the integral of $z^{1/2}/x$, where $z = x + (a^2 + x^2)^{1/2}$, as

$$2\sqrt{z} - \sqrt{\frac{a}{2}} \log \frac{a + z + \sqrt{2az}}{a + z - \sqrt{2az}} - \sqrt{2a} \tan^{-1} \frac{\sqrt{2az}}{a - z},$$

whereas it should be

$$2\sqrt{z} - \frac{1}{2} \sqrt{a} \log \frac{a + z + 2\sqrt{az}}{a + z - 2\sqrt{az}} - \sqrt{a} \tan^{-1} \frac{2\sqrt{az}}{a - z}.$$

335
The integral given is actually that of the function
\[\frac{x\sqrt{z}}{a^2 + x^2}. \]

This error was discovered in the course of research into algorithms for performing such integrations automatically; see pp. 163–164 of [1] for further details.

J. H. Davenport

Emmanuel College
Cambridge, England