Analysis of some mixed finite element methods related to reduced integration
Authors:
Claes Johnson and Juhani Pitkäranta
Journal:
Math. Comp. 38 (1982), 375400
MSC:
Primary 65N30
MathSciNet review:
645657
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We prove error estimates for the following two mixed finite element methods related to reduced integration: A method for Stokes' problem using rectangular elements with piecewise bilinear approximations for the velocities and piecewise constants for the pressure, and one method for a plate problem using bilinear approximations for transversal displacement and rotations and piecewise constants for the shear stress. The main idea of the proof in the case of Stokes' problem is to combine a weak BabuškaBrezzi type stability estimate for the pressure with a superapproximability property for the velocities. A similar technique is used in the case of the plate problem.
 [1]
Ivo
Babuška, Errorbounds for finite element method, Numer.
Math. 16 (1970/1971), 322–333. MR 0288971
(44 #6166)
 [2]
I. Babuška, J. Osborn & J. Pitkäranta, Analysis of Mixed Methods Using Mesh Dependent Norms, Report #2003, Mathematics Research Center, University of Wisconsin, 1979.
 [3]
M.
Bercovier, Perturbation of mixed variational problems. Application
to mixed finite element methods, RAIRO Anal. Numér.
12 (1978), no. 3, 211–236, iii (English, with
French summary). MR 509973
(80b:49031)
 [4]
F.
Brezzi, On the existence, uniqueness and approximation of
saddlepoint problems arising from Lagrangian multipliers, Rev.
Française Automat. Informat. Recherche Opérationnelle
Sér. Rouge 8 (1974), no. R2, 129–151
(English, with loose French summary). MR 0365287
(51 #1540)
 [5]
Philippe
G. Ciarlet, The finite element method for elliptic problems,
NorthHolland Publishing Co., Amsterdam, 1978. Studies in Mathematics and
its Applications, Vol. 4. MR 0520174
(58 #25001)
 [6]
M.
Crouzeix and P.A.
Raviart, Conforming and nonconforming finite element methods for
solving the stationary Stokes equations. I, Rev. Française
Automat. Informat. Recherche Opérationnelle Sér. Rouge
7 (1973), no. R3, 33–75. MR 0343661
(49 #8401)
 [7]
V.
Girault, A combined finite element and marker and cell method for
solving NavierStokes equations, Numer. Math. 26
(1976), no. 1, 39–59. MR 0449179
(56 #7484)
 [8]
V.
Girault and P.A.
Raviart, Finite element approximation of the NavierStokes
equations, Lecture Notes in Mathematics, vol. 749,
SpringerVerlag, Berlin, 1979. MR 548867
(83b:65122)
 [9]
R.
Glowinski and O.
Pironneau, On numerical methods for the Stokes problem, Energy
methods in finite element analysis, Wiley, Chichester, 1979,
pp. 243–264. MR 537009
(80j:76024)
 [10]
V.
A. Kondrat′ev, Boundary value problems for elliptic equations
in domains with conical or angular points, Trudy Moskov. Mat.
Obšč. 16 (1967), 209–292 (Russian). MR 0226187
(37 #1777)
 [11]
D. Malkus & T. Hughes, "Mixed finite element methodsReduced and selective integration techniques: A unification of concepts," Comput. Methods Appl. Mech. Engrg., v. 15, 1978, pp. 6381.
 [12]
H. Melzer & R. Rannacher, Spannungskonzentrationen in Eckpunkten der vertikalen belasteten Kirchoffschen Platte, Universität Bonn, 1979. (Preprint.)
 [13]
R. L. Sani, P. M. Gresho & R. L. Lee, On the Spurious Pressures Generated by Certain GFEM Solutions of the Incompressible NavierStokes Equations, Technical report, Lawrence Livermore Laboratory, Oct. 1979.
 [14]
Ranbir
S. Sandhu and Kamar
J. Singh, Reduced integration for improved accuracy of finite
element approximations, Comput. Methods Appl. Mech. Engrg.
14 (1978), no. 1, 23–37. MR 0495022
(58 #13790)
 [15]
Roger
Temam, Une méthode d’approximation de la solution des
équations de NavierStokes, Bull. Soc. Math. France
96 (1968), 115–152 (French). MR 0237972
(38 #6249)
 [1]
 I. Babuška, "Error bounds for finite element methods," Numer. Math., v. 16, 1971, pp. 322333. MR 0288971 (44:6166)
 [2]
 I. Babuška, J. Osborn & J. Pitkäranta, Analysis of Mixed Methods Using Mesh Dependent Norms, Report #2003, Mathematics Research Center, University of Wisconsin, 1979.
 [3]
 M. Bercovier, "Perturbation of mixed variational problems. Application to mixed finite element methods," R.A.I.R.O. Anal. Numér., v. 12, 1978, pp. 211236. MR 509973 (80b:49031)
 [4]
 F. Brezzi, "On the existence, uniqueness and approximation of saddlepoint problems arising from Lagrange multipliers," R.A.I.R.O. Sér. Rouge, v. 8, 1974, pp. 129151. MR 0365287 (51:1540)
 [5]
 P. Ciarlet, The Finite Element Method for Elliptic Problems, NorthHolland, Amsterdam, 1978. MR 0520174 (58:25001)
 [6]
 M. Crouzeix & P.A. Raviart, "Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I," R.A.I.R.O. Sér. Rouge, v. 7, 1973, pp. 3376. MR 0343661 (49:8401)
 [7]
 V. Girault, "A combined finite element and MarkerandCell method for solving NavierStokes equations," Numer. Math., v. 26, 1976, pp. 3959. MR 0449179 (56:7484)
 [8]
 V. Girault & P.A. Raviart, Finite Element Approximation of the NavierStokes Equations, Lecture Notes in Math., Vol. 749, SpringerVerlag, Berlin, 1979. MR 548867 (83b:65122)
 [9]
 R. Glowinski & O. Pironneau, "On numerical methods for the Stokes problem," in Energy Methods in Finite Element Analysis (Glowinski et al., Eds.), Wiley, New York, 1979. MR 537009 (80j:76024)
 [10]
 V. Kondrat'ev, "Boundary problems for elliptic equations in domains with conical or angular points," Trans. Moscow Math. Soc., v. 16, 1967, pp. 227313. MR 0226187 (37:1777)
 [11]
 D. Malkus & T. Hughes, "Mixed finite element methodsReduced and selective integration techniques: A unification of concepts," Comput. Methods Appl. Mech. Engrg., v. 15, 1978, pp. 6381.
 [12]
 H. Melzer & R. Rannacher, Spannungskonzentrationen in Eckpunkten der vertikalen belasteten Kirchoffschen Platte, Universität Bonn, 1979. (Preprint.)
 [13]
 R. L. Sani, P. M. Gresho & R. L. Lee, On the Spurious Pressures Generated by Certain GFEM Solutions of the Incompressible NavierStokes Equations, Technical report, Lawrence Livermore Laboratory, Oct. 1979.
 [14]
 K. Singh, "Reduced integration for improved accuracy of finite element approximations," Comput. Methods Appl. Mech. Engrg., v. 14, 1978, pp. 2337. MR 0495022 (58:13790)
 [15]
 R. Temam, "Une méthode d'approximation de la solution des equations NavierStokes," Bull. Soc. Math. France, v. 98, 1968, pp. 115152. MR 0237972 (38:6249)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65N30
Retrieve articles in all journals
with MSC:
65N30
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198206456572
PII:
S 00255718(1982)06456572
Article copyright:
© Copyright 1982 American Mathematical Society
