Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Optimal error properties of finite element methods for second order elliptic Dirichlet problems

Author: Arthur G. Werschulz
Journal: Math. Comp. 38 (1982), 401-413
MSC: Primary 65N30
MathSciNet review: 645658
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We use the informational approach of Traub and Woźniakowski [9] to study the variational form of the second order elliptic Dirichlet problem $ Lu = f$ on $ \Omega \subset {{\mathbf{R}}^N}$. For $ f \in {H^r}(\Omega )$, where $ r \geqslant - 1$, a quasi-uniform finite element method using n linear functionals $ {\smallint _\Omega }f{\psi _i}$ has $ {H^1}(\Omega )$-norm error $ \Theta ({n^{ - (r + 1)/N}})$. We prove that it is asymptotically optimal among all methods using any information consisting of any n linear functionals. An analogous result holds if L is of order 2m: if $ f \in {H^r}(\Omega )$, where $ r \geqslant - m$, then there is a finite element method whose $ {H^\alpha }(\Omega )$-norm error is $ \Theta ({n^{ - (2m + r - \alpha )/N}})$ for $ 0 \leqslant \alpha \leqslant m$, and this is asymptotically optimal; thus, the optimal error improves as m increases. If the integrals $ {\smallint _\Omega }f{\psi _i}$ are approximated by using n evaluations of f, then there is a finite element method with quadrature with $ {H^1}(\Omega )$-norm error $ O({n^{ - r/N}})$ where $ r > N/2$. We show that when $ N = 1$, there is no method using n function evaluations whose error is better than $ \Omega ({n^{ - r}})$; thus for $ N = 1$, the finite element method with quadrature is asymptotically optimal among all methods using n evaluations of f.

References [Enhancements On Off] (What's this?)

  • [1] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, N. J., 1965. MR 0178246 (31:2504)
  • [2] I. Babuška & A. K. Aziz, "Survey lectures on the mathematical foundations of the finite element method," in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, ed.), Academic Press, New York, 1972. MR 0421106 (54:9111)
  • [3] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [4] P. G. Ciarlet & P. A. Raviart, "Interpolation theory over curved elements," Comput. Methods Appl. Mech. Engrg., v. 1, 1972, pp. 217-249. MR 0375801 (51:11991)
  • [5] J. W. Jerome, "Asymptotic estimates of the $ {L_2}$ n-width," J. Math. Anal. Appl., v. 22, 1968, pp. 449-464. MR 0228905 (37:4484)
  • [6] J. W. Jerome, "On n-widths in Sobolev spaces and elliptic boundary value problems," J. Math. Anal. Appl., v. 29, 1970, pp. 201-215. MR 0254484 (40:7692)
  • [7] M. H. Schultz, "Multivariate spline functions and elliptic problems," in Approximation with Special Emphasis on Spline Functions (J. J. Schoenberg, ed.), Academic Press, New York, 1969. MR 0257560 (41:2210)
  • [8] S. L. Sobolev, "On the order of convergence of cubature formulas," Dokl. Akad. Nauk SSSR, v. 162, 1965, pp. 1005-1008; English transl. in Soviet Math. Dokl., v. 6, 1965, pp. 808-812. MR 0179528 (31:3776)
  • [9] J. F. Traub & H. Woźniakowski, A General Theory of Optimal Algorithms, Academic Press, New York, 1980. MR 584446 (84m:68041)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30

Retrieve articles in all journals with MSC: 65N30

Additional Information

Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society