Absorbing boundary conditions for the discretization schemes of the onedimensional wave equation
Author:
Laurence Halpern
Journal:
Math. Comp. 38 (1982), 415429
MSC:
Primary 65M05
MathSciNet review:
645659
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: When computing a partial differential equation, it is often necessary to introduce artificial boundaries. Here we explain a systematic method to obtain boundary conditions for the wave equation in one dimension, fitting to the discretization scheme and stable. Moreover, we give error estimates on the reflected part.
 [1]
P.
Bettess and O.
C. Zienkiewicz, Diffraction and refraction of surface waves using
finite and infinite elements, Internat. J. Numer. Methods Engrg.
11 (1977), no. 8, 1271–1290. MR 0452132
(56 #10413)
 [2]
R. W. Clayton & B. Engquist, "Absorbing boundary conditions for the numerical solution of wave propagation problems," SSA Bull., v. 6, 1977, pp. 15291540.
 [3]
R. W. Clayton & B. Engquist, "Absorbing boundary conditions for waveequation migration," Geophysics, v. 45, 1980, pp. 895904.
 [4]
Bjorn
Engquist and Andrew
Majda, Absorbing boundary conditions for the
numerical simulation of waves, Math. Comp.
31 (1977), no. 139, 629–651. MR 0436612
(55 #9555), http://dx.doi.org/10.1090/S00255718197704366124
 [5]
Björn
Engquist and Andrew
Majda, Radiation boundary conditions for acoustic and elastic wave
calculations, Comm. Pure Appl. Math. 32 (1979),
no. 3, 314–358. MR 517938
(80e:76041), http://dx.doi.org/10.1002/cpa.3160320303
 [6]
L. Halpern, Etude de Conditiones aux Limites Absorbantes pour des Schémas Numériques Relatifs à des Equations Hyperboliques Linéaires, Thèse de 3éme cycle, Université Paris VI, Septembre 1980.
 [7]
HeinzOtto
Kreiss, Initial boundary value problems for hyperbolic
systems, Comm. Pure Appl. Math. 23 (1970),
277–298. MR 0437941
(55 #10862)
 [8]
E. L. Lindmann, ""Freespace" boundary conditions for the time dependent wave equation," J. Comput. Phys., v. 18, 1975, pp. 6678.
 [9]
Andrew
Majda and Stanley
Osher, Reflection of singularities at the boundary, Comm. Pure
Appl. Math. 28 (1975), no. 4, 479–499. MR 0492792
(58 #11858a)
 [10]
Louis
Nirenberg, Lectures on linear partial differential equations,
American Mathematical Society, Providence, R.I., 1973. Expository Lectures
from the CBMS Regional Conference held at the Texas Technological
University, Lubbock, Tex., May 22–26, 1972; Conference Board of the
Mathematical Sciences Regional Conference Series in Mathematics, No. 17. MR 0450755
(56 #9048)
 [11]
A. C. Reynolds, "Boundary conditions for the numerical solution of wave propagation problems," Geophysics, v. 43, 1978, pp. 10991110.
 [12]
W. D. Smith, "A non reflecting plane boundary for wave propagation problems," J. Comput. Phys., v. 15, 1974, pp. 492503.
 [13]
Gilbert
Strang and George
J. Fix, An analysis of the finite element method,
PrenticeHall, Inc., Englewood Cliffs, N. J., 1973. PrenticeHall Series in
Automatic Computation. MR 0443377
(56 #1747)
 [14]
Michael
E. Taylor, Reflection of singularities of solutions to systems of
differential equations, Comm. Pure Appl. Math. 28
(1975), no. 4, 457–478. MR 0509098
(58 #22994)
 [1]
 P. Bettes & O. C. Zienkiewicz, "Diffraction and refraction of surfaces waves using finite and infinite elements," Internat. J. Numer. Methods Engrg., v. 11, 1977, pp. 12711290. MR 0452132 (56:10413)
 [2]
 R. W. Clayton & B. Engquist, "Absorbing boundary conditions for the numerical solution of wave propagation problems," SSA Bull., v. 6, 1977, pp. 15291540.
 [3]
 R. W. Clayton & B. Engquist, "Absorbing boundary conditions for waveequation migration," Geophysics, v. 45, 1980, pp. 895904.
 [4]
 B. Engquist & A. Majda, "Absorbing boundary conditions for numerical simulation of waves," Math. Comp., v. 31, 1977, pp. 629651. MR 0436612 (55:9555)
 [5]
 B. Engquist & A. Majda, "Boundary conditions for acoustic and elastic wave calculations," Comm. Pure Appl. Math., v. 32, 1979, p. 313. MR 517938 (80e:76041)
 [6]
 L. Halpern, Etude de Conditiones aux Limites Absorbantes pour des Schémas Numériques Relatifs à des Equations Hyperboliques Linéaires, Thèse de 3éme cycle, Université Paris VI, Septembre 1980.
 [7]
 H. O. Kreiss, "Initial boundary value problems for hyperbolic systems," Comm. Pure Appl. Math., v. 23, 1970, pp. 277298. MR 0437941 (55:10862)
 [8]
 E. L. Lindmann, ""Freespace" boundary conditions for the time dependent wave equation," J. Comput. Phys., v. 18, 1975, pp. 6678.
 [9]
 A. Majda & S. Osher, "Reflection of singularities at the boundary," Comm. Pure Appl. Math., v. 28, 1975, pp. 479491. MR 0492792 (58:11858a)
 [10]
 L. Nirenberg, Lectures on Linear Partial Differential Equations, CBMS Regional Conf. Ser. in Math., no. 17, Amer. Math. Soc., Providence, R. I., 1973; reprinted 1979. MR 0450755 (56:9048)
 [11]
 A. C. Reynolds, "Boundary conditions for the numerical solution of wave propagation problems," Geophysics, v. 43, 1978, pp. 10991110.
 [12]
 W. D. Smith, "A non reflecting plane boundary for wave propagation problems," J. Comput. Phys., v. 15, 1974, pp. 492503.
 [13]
 G. Strang & G. J. Fix, Analysis of the Finite Element Method, PrenticeHall, Englewood Cliffs, N. J., 1973. MR 0443377 (56:1747)
 [14]
 M. E. Taylor, "Reflecting of singularities of solutions to systems of differential equations," Comm. Pure Appl. Math., v. 28, 1975, pp. 457478. MR 0509098 (58:22994)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65M05
Retrieve articles in all journals
with MSC:
65M05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198206456596
PII:
S 00255718(1982)06456596
Article copyright:
© Copyright 1982
American Mathematical Society
