Absorbing boundary conditions for the discretization schemes of the one-dimensional wave equation

Author:
Laurence Halpern

Journal:
Math. Comp. **38** (1982), 415-429

MSC:
Primary 65M05

DOI:
https://doi.org/10.1090/S0025-5718-1982-0645659-6

MathSciNet review:
645659

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: When computing a partial differential equation, it is often necessary to introduce artificial boundaries. Here we explain a systematic method to obtain boundary conditions for the wave equation in one dimension, fitting to the discretization scheme and stable. Moreover, we give error estimates on the reflected part.

**[1]**P. Bettess and O. C. Zienkiewicz,*Diffraction and refraction of surface waves using finite and infinite elements*, Internat. J. Numer. Methods Engrg.**11**(1977), no. 8, 1271–1290. MR**0452132**, https://doi.org/10.1002/nme.1620110808**[2]**R. W. Clayton & B. Engquist, "Absorbing boundary conditions for the numerical solution of wave propagation problems,"*SSA Bull.*, v. 6, 1977, pp. 1529-1540.**[3]**R. W. Clayton & B. Engquist, "Absorbing boundary conditions for wave-equation migration,"*Geophysics*, v. 45, 1980, pp. 895-904.**[4]**Bjorn Engquist and Andrew Majda,*Absorbing boundary conditions for the numerical simulation of waves*, Math. Comp.**31**(1977), no. 139, 629–651. MR**0436612**, https://doi.org/10.1090/S0025-5718-1977-0436612-4**[5]**Björn Engquist and Andrew Majda,*Radiation boundary conditions for acoustic and elastic wave calculations*, Comm. Pure Appl. Math.**32**(1979), no. 3, 314–358. MR**517938**, https://doi.org/10.1002/cpa.3160320303**[6]**L. Halpern,*Etude de Conditiones aux Limites Absorbantes pour des Schémas Numériques Relatifs à des Equations Hyperboliques Linéaires*, Thèse de 3éme cycle, Université Paris VI, Septembre 1980.**[7]**Heinz-Otto Kreiss,*Initial boundary value problems for hyperbolic systems*, Comm. Pure Appl. Math.**23**(1970), 277–298. MR**0437941**, https://doi.org/10.1002/cpa.3160230304**[8]**E. L. Lindmann, ""Free-space" boundary conditions for the time dependent wave equation,"*J. Comput. Phys.*, v. 18, 1975, pp. 66-78.**[9]**Andrew Majda and Stanley Osher,*Reflection of singularities at the boundary*, Comm. Pure Appl. Math.**28**(1975), no. 4, 479–499. MR**0492792**, https://doi.org/10.1002/cpa.3160280404**[10]**Louis Nirenberg,*Lectures on linear partial differential equations*, American Mathematical Society, Providence, R.I., 1973. Expository Lectures from the CBMS Regional Conference held at the Texas Technological University, Lubbock, Tex., May 22–26, 1972; Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 17. MR**0450755****[11]**A. C. Reynolds, "Boundary conditions for the numerical solution of wave propagation problems,"*Geophysics*, v. 43, 1978, pp. 1099-1110.**[12]**W. D. Smith, "A non reflecting plane boundary for wave propagation problems,"*J. Comput. Phys.*, v. 15, 1974, pp. 492-503.**[13]**Gilbert Strang and George J. Fix,*An analysis of the finite element method*, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation. MR**0443377****[14]**Michael E. Taylor,*Reflection of singularities of solutions to systems of differential equations*, Comm. Pure Appl. Math.**28**(1975), no. 4, 457–478. MR**0509098**, https://doi.org/10.1002/cpa.3160280403

Retrieve articles in *Mathematics of Computation*
with MSC:
65M05

Retrieve articles in all journals with MSC: 65M05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1982-0645659-6

Article copyright:
© Copyright 1982
American Mathematical Society