Primes of the form and

Authors:
J. P. Buhler, R. E. Crandall and M. A. Penk

Journal:
Math. Comp. **38** (1982), 639-643

MSC:
Primary 10A25; Secondary 10A10

DOI:
https://doi.org/10.1090/S0025-5718-1982-0645679-1

Corrigendum:
Math. Comp. **40** (1983), 727.

Corrigendum:
Math. Comp. **40** (1983), 727.

MathSciNet review:
645679

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: All primes less than of the form or are determined. Results of Brillhart, Lehmer, and Selfridge are used together with a fast algorithm that applies to primality tests of integers *N* for which many factors of are known.

**[1]**L. Adleman, C. Pomerance & R. Rumely, "On distinguishing prime numbers from composite numbers." (Preprint.) MR**683806 (84e:10008)****[2]**A. Borning, "Some results for and ,"*Math. Comp.*, v. 26, 1972, pp. 567-570. MR**0308018 (46:7133)****[3]**J. Brillhart, D. H. Lehmer & J. L. Selfridge, "New primality criteria and factorizations of ,"*Math. Comp.*, v. 29, 1975, pp. 620-647. MR**0384673 (52:5546)****[4]**G. L. Miller, "Riemann's hypothesis and tests for primality,"*J. Comput. Systems Sci.*, v. 13, 1976, pp. 300-317. MR**0480295 (58:470a)****[5]**M. Templer, "On the primality of and ,"*Math. Comp.*, v. 34, 1980, pp. 303-304. MR**551306 (80j:10010)**

Retrieve articles in *Mathematics of Computation*
with MSC:
10A25,
10A10

Retrieve articles in all journals with MSC: 10A25, 10A10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1982-0645679-1

Article copyright:
© Copyright 1982
American Mathematical Society