Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Mesh modification for evolution equations

Author: Todd Dupont
Journal: Math. Comp. 39 (1982), 85-107
MSC: Primary 65M60
MathSciNet review: 658215
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Finite element methods for which the underlying function spaces change with time are studied. The error estimates produced are all in norms that are very naturally associated with the problems. In some cases the Galerkin solution error can be seen to be quasi-optimal. K. Miller's moving finite element method is studied in one space dimension; convergence is proved for the case of smooth solutions of parabolic problems. Most, but not all, of the analysis is done on linear problems. Although second order parabolic equations are emphasized, there is also some work on first order hyperbolic and Sobolev equations.

References [Enhancements On Off] (What's this?)

  • [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. MR 0450957 (56:9247)
  • [2] R. Alexander, P. Manselli & K. Miller, "Moving finite elements for the Stefan problem in two dimensions," Rend. Accad. Naz. Lincei (Rome), Ser. 8, v. 67, 1979, pp. 57-61. MR 617276 (83e:65167)
  • [3] T. B. Benjamin, J. L. Bona & J. J. Mahony, "Model equations for long waves in nonlinear dispersive systems," Philos. Trans. Roy. Soc. London Ser. A, v. 272, 1972, pp. 47-80. MR 0427868 (55:898)
  • [4] R. Bonnerot & P. Jamet, "A second order finite element method for the one-dimensional Stefan problem," Internat. J. Numer. Methods Engrg., v. 8, 1974, pp. 811-820.
  • [5] R. Bonnerot & P. Jamet, "Numerical computation of the free boundary for the two-dimensional Stefan problem by space-time finite elements," J. Comput. Phys., v. 25, 1977, pp. 163-181. MR 0474875 (57:14506)
  • [6] R. Bonnerot & P. Jamet, "A conservative finite element method for one-dimensional Stefan problems with appearing and disappearing phases," J. Comput. Phys., v. 41, 1981, pp. 357-388. MR 626616 (82h:65081)
  • [7] R. Bonnerot & P. Jamet, "Numerical solution of the Eulerian equations of compressible flow by a finite element method which follows the free boundary and the interfaces," J. Comput. Phys., v. 18, 1975, pp. 21-45. MR 0381513 (52:2406)
  • [8] J. Douglas, Jr., & T. Dupont, "Galerkin methods for parabolic equations," SIAM J. Numer. Anal., v. 7, 1970, pp. 575-626. MR 0277126 (43:2863)
  • [9] T. Dupont, "Galerkin methods for first-order hyperbolics: An example," SIAM J. Numer. Anal., v. 10, 1973, pp. 890-899. MR 0349046 (50:1540)
  • [10] R. Ewing, "Numerical solution of Sobolev partial differential equations," SIAM J. Numer. Anal., v. 12, 1975, pp. 345-363. MR 0395265 (52:16062)
  • [11] R. J. Gelinas, S. K. Doss & K. Miller, "The moving finite element method: Applications to general partial differential equations with multiple large gradients," J. Comput. Phys., v. 11, 1981, pp. 202-249. MR 611809 (82e:65110)
  • [12] P. Jamet, "Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain," SIAM J. Numer. Anal., v. 15, 1978, pp. 912-928. MR 507554 (80e:65102)
  • [13] P. Jamet, "Stability and convergence of a generalized Crank-Nicolson scheme on a variable mesh for the heat equation," SIAM J. Numer. Anal., v. 17, 1980, pp. 530-539. MR 584728 (82j:65073)
  • [14] O. K. Jensen & B. A. Finlayson, "Solution of the transport equations using a moving coordinate system," Adv. in Water Resources, v. 3, 1980, pp. 9-18.
  • [15] O. K. Jensen & B. A. Finlayson, "Simulation of sharp fronts in two dimensions with finite element techniques," Finite Elements in Water Resources (S. Y. Wang et al., eds.), Rose Printing Co., 1980. MR 593595 (81k:76063)
  • [16] D. R. Lynch & W. G. Gray, "Finite element simulation of flow in deforming regions," J. Comput. Phys., v. 36, 1980, pp. 135-153. MR 579078 (81e:76022)
  • [17] R. Miller & K. Miller, "Moving finite elements, part I," SIAM J. Numer. Anal., v. 18, 1981, pp. 1019-1032. MR 638996 (84m:65113a)
  • [18] K. Miller, "Moving finite elements, part II," SIAM J. Numer. Anal., v. 18, 1981, pp. 1033-1057. MR 638997 (84m:65113b)
  • [19] K. O'Neill & D. R. Lynch, "Effective and highly accurate solution of diffusion and convection-diffusion problems using moving, deforming coordinates." (To appear.)
  • [20] H. S. Price & R. S. Varga, "Error bounds for semidiscrete Galerkin approximations of parabolic problems with applications to petroleum reservoir mechanics," Numerical Solution of Field Problems in Continuum Physics (G Birkhoff and R. S. Varga, eds.), SIAM-AMS Proc., Vol. 2, Amer. Math. Soc., Providence, R. I., 1970. MR 0266452 (42:1358)
  • [21] A. H. Schatz, V. Thomée & L. B. Wahlbin, "Maximum norm stability and error estimates in parabolic finite element equations," Comm. Pure Appl. Math., v. 33, 1980, pp. 265-304. MR 562737 (81g:65136)
  • [22] B. Swartz & B. Wendroff, "Generalized finite-difference schemes," Math. Comp., v. 23, 1969, pp. 37-49. MR 0239768 (39:1125)
  • [23] B. Wendroff, Two-Fluid Models: A Critical Survey, presented to EPRI workshop on basic two-phase flow modeling in reactor safety and performance, Tampa, Fla., 2/28-3/1/79; also LA-UR-79-291.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65M60

Retrieve articles in all journals with MSC: 65M60

Additional Information

Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society