Type-insensitive ODE codes based on implicit -stable formulas

Author:
L. F. Shampine

Journal:
Math. Comp. **39** (1982), 109-123

MSC:
Primary 65L05

DOI:
https://doi.org/10.1090/S0025-5718-1982-0658216-2

MathSciNet review:
658216

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Previous work on *A*-stable formulas is extended to -stable formulas, which are far more important in practice. Some important improvements in technique based on another interation method and an idea of Enright for the efficient handling of Jacobians are proposed. Implementation details and numerical examples are provided for a research-grade code.

**[1]**W. H. Enright,*Improving the efficiency of matrix operations in the numerical solution of stiff ordinary differential equations*, ACM Trans. Math. Software**4**(1978), no. 2, 127–136. MR**0483482**, https://doi.org/10.1145/355780.355784**[2]**W. H. Enright, T. E. Hull & B. Lindberg, "Comparing numerical methods for stiff systems of O.D.E's,"*BIT*, v. 15, 1975, pp. 10-48.**[3]**A. C. Hindmarsh, "LSODE and LSODI, two new initial value ordinary differential equation solvers,"*SIGNUM Newsletter*, v. 15, 1980, pp. 10-11.**[4]**P. J. van der Houwen,*Construction of integration formulas for initial value problems*, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. North-Holland Series in Applied Mathematics and Mechanics, Vol. 19. MR**0519726****[5]**L. F. Shampine,*Stiffness and non-stiff differential equation solvers*, Numerische Behandlungen (Tagung, Math. Forschungsinst., Oberwolfach, 1974), Birkhäuser, Basel, 1975, pp. 287–301. Internat. Schriftenreihe Numer. Math., Band 27. MR**0408261****[6]**L. F. Shampine,*Evaluation of implicit formulas for the solution of ODEs*, BIT**19**(1979), no. 4, 495–502. MR**559959**, https://doi.org/10.1007/BF01931266**[7]**L. F. Shampine,*Implementation of Rosenbrock methods*, ACM Trans. Math. Software**8**(1982), no. 2, 93–113. MR**661123**, https://doi.org/10.1145/355993.355994**[8]**L. F. Shampine,*Implementation of implicit formulas for the solution of ODEs*, SIAM J. Sci. Statist. Comput.**1**(1980), no. 1, 103–118. MR**572543**, https://doi.org/10.1137/0901005**[9]**Lawrence F. Shampine,*Evaluation of a test set for stiff ODE solvers*, ACM Trans. Math. Software**7**(1981), no. 4, 409–420. MR**654902**, https://doi.org/10.1145/355972.355973**[10]**L. F. Shampine,*Type-insensitive ODE codes based on implicit 𝐴(𝛼)-stable formulas*, Math. Comp.**39**(1982), no. 159, 109–123. MR**658216**, https://doi.org/10.1090/S0025-5718-1982-0658216-2**[11]**L. F. Shampine and M. K. Gordon,*Computer solution of ordinary differential equations*, W. H. Freeman and Co., San Francisco, Calif., 1975. The initial value problem. MR**0478627****[12]**L. F. Shampine & H. A. Watts,*DEPAC--Design of a User Oriented Package of ODE Solvers*, Report SAND79-2374, Sandia National Laboratories, Albuquerque, N. M., 1980.**[13]**Stig Skelboe,*The control of order and steplength for backward differentiation methods*, Nordisk Tidskr. Informationsbehandling (BIT)**17**(1977), no. 1, 91–107. MR**0451740****[14]**A. Prothero, "Introduction to stiff problems," Chap. 9 in*Modern Numerical Methods for Ordinary Differential Equations*(G. Hall and J. M. Watt, eds.), Clarendon Press, Oxford, 1976.**[15]**J. Williams,*The Problem of Implicit Formulas in Numerical Methods for Stiff Differential Equations*, Report 40, Dept. of Math., Univ. of Manchester, Manchester, England, 1979.

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05

Retrieve articles in all journals with MSC: 65L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1982-0658216-2

Keywords:
ODE codes,
stiffness,
-stable

Article copyright:
© Copyright 1982
American Mathematical Society