Error estimates for the multidimensional two-phase Stefan problem

Authors:
Joseph W. Jerome and Michael E. Rose

Journal:
Math. Comp. **39** (1982), 377-414

MSC:
Primary 65M60; Secondary 65M05, 65M10

DOI:
https://doi.org/10.1090/S0025-5718-1982-0669635-2

MathSciNet review:
669635

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we derive rates of convergence for regularizations of the multidimensional two-phase Stefan problem and use the regularized problems to define backward-difference in time and piecewise-linear in space Galerkin approximations. We find an rate of convergence of order in the -regularization and an rate of convergence of order in the Galerkin estimates which leads to the natural choices , , and a resulting rate of convergence of the numerical scheme to the solution of the differential equation. An essentially rate is demonstrated when and in our Galerkin scheme under a boundedness hypothesis on the Galerkin approximations. The latter result is consistent with computational experience.

**[1]**S. Agmon, A. Douglas & L. Nirenberg, "Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions,"*Comm. Pure Appl. Math.*, v. 12, 1959, pp. 623-727. MR**0125307 (23:A2610)****[2]**O. B. Andersland & D. M. Anderson (eds.),*Geotechnical Engineering for Cold Regions*, McGraw-Hill, New York, 1978.**[3]**D. M. Anderson & N. R. Morgenstern, "Physics, chemistry and mechanics of frozen ground," in Proc. North American Permafrost Second International Conf., Nat. Acad. Sciences, Washington, D. C., 1973, pp. 257-295.**[4]**J. H. Bramble, A. H. Schatz, V. Thomée & L. B. Wahlbin, "Some convergence estimates for semi-discrete Galerkin type approximations for parabolic equations,"*SIAM J. Numer. Anal.*, v. 14, 1977, pp. 218-241. MR**0448926 (56:7231)****[5]**H. Brezis,*Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert*, North-Holland/American Elsevier, Amsterdam/New York, 1973. MR**0348562 (50:1060)****[6]**H. Brezis & W. Strauss, "Semilinear elliptic equations in "*J. Math. Soc. Japan*, v. 25, 1973, pp. 565-590. MR**0336050 (49:826)****[7]**B. M. Budak, E. N. Solov'eva & A. B. Uspensiĭ, "A difference method with smoothing of coefficients for the solution of the Stefan problem,"*Ž Vyčisl. Mat. i Mat. Fiz.*, v. 5, 1965, pp. 828-840. (Russian) MR**0199969 (33:8109)****[8]**L. Caffarelli & L. C. Evans, "Continuity of the temperature in the two-phase Stefan problem,"*Arch. Rational Mech. Anal.*(To appear.) MR**683353 (84g:35070)****[9]**P. G. Ciarlet,*The Finite Element Method for Elliptic Problems*, North-Holland/American Elsevier, Amsterdam/New York, 1978. MR**0520174 (58:25001)****[10]**J. F. Ciavaldini, "Analyse numérique d'un problème de Stefan à deux phases par une méthode l'éléments finis,"*SIAM J. Numer. Anal.*, v. 12, 1975, pp. 464-487. MR**0391741 (52:12561)****[11]**A. Damlamian, "Some results on the multi-phase Stefan problem,"*Comm. Partial Differential Equations*, v. 2, 1977, pp. 1017-1044. MR**0487015 (58:6694)****[12]**E. Di Benedetto,*Continuity of Weak Solutions to Certain Singular Parabolic Equations*, MRC Tech. Report 2124, Madison, Wisc., 1980.**[13]**J. Douglas, Jr., T. Dupont & L. Wahlbin, "Optimal error estimates for Galerkin approximations to solutions of two-point boundary value problems,"*Math. Comp.*, v. 29, 1975, pp. 475-483. MR**0371077 (51:7298)****[14]**N. Dunford & J. Schwartz,*Linear Operators*, Vol. I, Wiley, New York, 1957. 15. A. Friedman, "The Stefan problem in several space variables,"*Trans. Amer. Math. Soc.*, v. 133, 1968, pp. 51-87.**[16]**E. Hille & R. S. Phillips,*Functional Analysis and Semigroups*, Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR**0089373 (19:664d)****[17]**J. Jerome, "Nonlinear equations of evolution and a generalized Stefan problem,"*J. Differential Equations*, v. 26, 1977, pp. 240-261. MR**0481543 (58:1659a)****[18]**J. Jerome, "Existence and approximation of weak solutions of nonlinear Dirichlet problems with discontinuous coefficients,"*SIAM J. Math. Anal.*, v. 9, 1978, pp. 730-742. MR**498348 (80d:47097)****[19]**C. Johnson & V. Thomée, "Error estimates for some mixed finite element methods for parabolic type problems,"*RAIRO Anal. Numér.*, v. 15, 1981, pp. 41-78. MR**610597 (83c:65239)****[20]**S. Kamenomostskaja, "On the Stefan problem,"*Mat. Sb.*, v. 53, 1961, pp. 489-514. (Russian)**[21]**T. Kato, "Linear evolution equations of hyperbolic type II,"*J. Math. Soc. Japan*, v. 25, 1973, pp. 648-666. MR**0326483 (48:4827)****[22]**S. N. Kruzhkov, "First order quasilinear equations in several independent variables,"*Math. USSR Sb.*, v. 10, 1970, pp. 217-243.**[23]**O. Ladyzhenskaya, V. Solonnikov & N. Ural'ceva,*Linear and Quasilinear Equations of Parabolic Type*, Transl. Math. Monographs, vol. 23, Amer. Math. Soc., Providence, R. I., 1968.**[24]**A. Lazaridis, "A numerical solution of the multidimensional solidification (or melting) problem,"*Internat. J. Heat Mass Transfer*, v. 13, 1970, pp. 1459-1477.**[25]**J. L. Lions,*Quelques Méthodes de Resolution des Problèmes aux Limites non Linéaires*, Dunod, Paris, 1969. MR**0259693 (41:4326)****[26]**G. H. Meyer, "Multidimensional Stefan problems,"*SIAM J. Numer. Anal.*, v. 10, 1973, pp. 522-538. MR**0331807 (48:10139)****[27]**J. Nitsche,*Convergence of Finite Element Approximations*, Proc. Second Conf. on Finite Elements, Rennes, France, 1975. MR**568857 (81e:65058)****[28]**R. Rannacher, "Zur -Konvergenz linearer Finiter Elemente,"*Math. Z.*, v. 149, 1976, pp. 69-77. MR**0488859 (58:8361)****[29]**Michael E. Rose, "Numerical methods for flows through porous media. I,"*Math. Comp.*(submitted). Also available as Argonne National Laboratory Report. MR**689465 (85a:65146)****[30]**Milton E. Rose, "A method for calculating solutions of parabolic equations with a free boundary,"*Math. Comp.*, v. 14, 1960, pp. 249-256. MR**0115283 (22:6085)****[31]**L. Rubenstein,*The Stefan Problem*, Transl. Math. Monographs, vol. 27, Amer. Math. Soc., Providence, R. I. 1971. MR**0351348 (50:3837)****[32]**A. A. Samarskiĭ & B. D. Moiseenko, "An efficient scheme for (the) thorough computation in a many dimensional Stefan problem,"*Ž. Vyčisl. Mat. i Mat. Fiz.*, v. 5, 1965, pp. 816-827. MR**0203960 (34:3807)****[33]**A. H. Schatz & L. B. Wahlbin, "On the quasi-optimality in of the -projection into finite element spaces,"*Math. Comp.*, v. 38, 1982, pp. 1-22. MR**637283 (82m:65106)****[34]**R. Scott, "Optimal estimates for the finite element method on irregular meshes,"*Math. Comp.*, v. 30, 1976, pp. 681-697. MR**0436617 (55:9560)****[35]**S. L. Sobolev,*Applications of Functional Analysis in Mathematical Physics*, Transl. Math. Monographs, vol. 7, Amer. Math. Soc., Providence, R. I. 1963. MR**0165337 (29:2624)****[36]**A. Solomon, "Some remarks on the Stefan problem,"*Math. Comp.*, v. 20, 1966, pp. 347-360. MR**0202391 (34:2262)****[37]**G. Strang, "Approximation in the finite element method,"*Numer. Math.*, v. 19, 1972, pp. 81-98. MR**0305547 (46:4677)****[38]**G. Strang & G. Fix,*Analysis of the Finite Element Method*, Prentice-Hall, Englewood Cliffs, N. J., 1973. MR**0443377 (56:1747)****[39]**J. A. Wheeler, Jr.,*Simulation of Heat Transfer from a Warm Pipeline Buried in Permafrost*, Proc. 74th National Meeting AIChE, March 1973.**[40]**J. A. Wheeler, Jr., "Permafrost thermal design for the trans-Alaska pipeline," in*Moving Boundary Problems*(Wilson, Solomon, Boggs, eds.), Academic Press, New York, 1978, pp. 267-284.**[41]**J. A. Wheeler, Jr., Personal communication.

Retrieve articles in *Mathematics of Computation*
with MSC:
65M60,
65M05,
65M10

Retrieve articles in all journals with MSC: 65M60, 65M05, 65M10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1982-0669635-2

Article copyright:
© Copyright 1982
American Mathematical Society