Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Eigenvalue problems on infinite intervals

Author: Peter A. Markowich
Journal: Math. Comp. 39 (1982), 421-441
MSC: Primary 34B25
MathSciNet review: 669637
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with eigenvalue problems for boundary value problems of ordinary differential equations posed on an infinite interval. Problems of that kind occur for example in fluid mechanics when the stability of laminar flows is investigated. Characterizations of eigenvalues and spectral subspaces are given, and the convergence of approximating problems, which are derived by reducing the infinite interval to a finite but large one and by imposing additional boundary conditions at the far end, is proved. Exponential convergence is shown for a large class of problems.

References [Enhancements On Off] (What's this?)

  • [1] C. de Boor & B. Swartz, Collocation Approximation to Eigenvalues of an Ordinary Differential Equation. The Principle of the Thing, MRC Tech. Report #1937, Madison, Wisc., 1980.
  • [2] N. Dunford & J. T. Schwartz, Linear Operators. I, Interscience, New York, 1957; Vol. VII in Pure and Appl. Math. (To appear.) MR 0188745 (32:6181)
  • [3] R. D. Grigorieff, "Diskrete Approximation von Eigenwertproblemen. I, II," Numer. Math., v. 24, 1975, pp. 355-374, 415-433.
  • [4] Ch. E. Grosch & S. A. Orszag, "Numerical solution of problems in unbounded regions: Coordinate transforms," J. Comput. Phys., v. 25, 1977, pp. 273-296. MR 0488870 (58:8372)
  • [5] F. R. de Hoog & R. Weiss, "Difference methods for boundary value problems with a singularity of the first kind," SIAM J. Numer. Anal., v. 13, 1976, pp. 775-813. MR 0440931 (55:13799)
  • [6] F. R. de Hoog & R. Weiss, "On the boundary value problem for systems of ordinary differential equations with a singularity of the second kind,"SIAM J. Math. Anal., v. 11, 1980, pp. 46-61. MR 556495 (81a:34017)
  • [7] F. R. de Hoog & R. Weiss, "An approximation method for boundary value problems on infinite intervals," Computing, v. 24, 1980, pp. 227-239. MR 620090 (82f:65087)
  • [8] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin and New York, 1966. MR 0203473 (34:3324)
  • [9] H. Keller, "Numerical solution of two point boundary value problems," Regional Conf. Series in Appl. Math., No. 24, SIAM, Philadelphia, Pa., 1976. MR 0433897 (55:6868)
  • [10] H. O. Kreiss, "Difference approximations for boundary and eigenvalue problems for ordinary differential equations," Math. Comp., v. 26, 1972, pp. 649-686. MR 0341888 (49:6634)
  • [11] M. Lentini & H. B. Keller, "Boundary value problems on semi-infinite intervals and their numerical solution," SIAM J. Numer. Anal., v. 13, 1980, pp. 577-604. MR 584732 (81j:65092)
  • [12] P. A. Markowich, Randwertprobleme auf Unendllichen Intervallen, Dissertation, TU Wien, 1980.
  • [13] A. Markowich, "Analysis of boundary value problems on infinite intervals," SIAM J. Appl. Math., v. 42, 1982, pp. 549-557.
  • [14] P. A. Markowich, "A theory for the approximation of solutions of boundary value problems on infinite intervals," SIAM J. Math. Anal., v. 13, 1982, pp. 484-513. MR 653468 (83e:34024)
  • [15] B. S. Ng & W. H. Reid, "On the numerical solution of the Orr-Sommerfeld problem. Asymptotic initial conditions for shooting methods," J. Comput. Phys., v. 38, 1980, pp. 275-293. MR 609434 (82h:76022)
  • [16] J. E. Osborn, "Spectral approximation for compact operators," Math. Comp., v. 28, 1975, pp. 712-725. MR 0383117 (52:3998)
  • [17] F. Stummel, "Diskrete Konvergenz linearer Operatoren. I," Math. Ann., v. 190, 1970/71, pp. 45-92. MR 0291870 (45:959)
  • [18] F. Stummel, "Diskrete Konvergenz linearer Operatoren. II," Math. Z., v. 120, 1971, pp. 231-264. MR 0291871 (45:960)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 34B25

Retrieve articles in all journals with MSC: 34B25

Additional Information

Keywords: Boundary value problems of linear equations, spectral theory of boundary value problems, boundedness of solutions, asymptotic expansion, theoretical approximation of solutions
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society