Eigenvalue problems on infinite intervals

Author:
Peter A. Markowich

Journal:
Math. Comp. **39** (1982), 421-441

MSC:
Primary 34B25

DOI:
https://doi.org/10.1090/S0025-5718-1982-0669637-6

MathSciNet review:
669637

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with eigenvalue problems for boundary value problems of ordinary differential equations posed on an infinite interval. Problems of that kind occur for example in fluid mechanics when the stability of laminar flows is investigated. Characterizations of eigenvalues and spectral subspaces are given, and the convergence of approximating problems, which are derived by reducing the infinite interval to a finite but large one and by imposing additional boundary conditions at the far end, is proved. Exponential convergence is shown for a large class of problems.

**[1]**C. de Boor & B. Swartz,*Collocation Approximation to Eigenvalues of an Ordinary Differential Equation. The Principle of the Thing*, MRC Tech. Report #1937, Madison, Wisc., 1980.**[2]**Nelson Dunford and Jacob T. Schwartz,*Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space*, With the assistance of William G. Bade and Robert G. Bartle, Interscience Publishers John Wiley & Sons New York-London, 1963. MR**0188745****[3]**R. D. Grigorieff, "Diskrete Approximation von Eigenwertproblemen. I, II,"*Numer. Math.*, v. 24, 1975, pp. 355-374, 415-433.**[4]**Chester E. Grosch and Steven A. Orszag,*Numerical solution of problems in unbounded regions: coordinate transforms*, J. Computational Phys.**25**(1977), no. 3, 273–295. MR**0488870****[5]**Frank R. de Hoog and Richard Weiss,*Difference methods for boundary value problems with a singularity of the first kind*, SIAM J. Numer. Anal.**13**(1976), no. 5, 775–813. MR**0440931**, https://doi.org/10.1137/0713063**[6]**Frank R. de Hoog and Richard Weiss,*On the boundary value problem for systems of ordinary differential equations with a singularity of the second kind*, SIAM J. Math. Anal.**11**(1980), no. 1, 41–60. MR**556495**, https://doi.org/10.1137/0511003**[7]**F. R. de Hoog and R. Weiss,*An approximation theory for boundary value problems on infinite intervals*, Computing**24**(1980), no. 2-3, 227–239 (English, with German summary). MR**620090**, https://doi.org/10.1007/BF02281727**[8]**Tosio Kato,*Perturbation theory for linear operators*, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR**0203473****[9]**Herbert B. Keller,*Numerical solution of two point boundary value problems*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. Regional Conference Series in Applied Mathematics, No. 24. MR**0433897****[10]**Bertil Gustafsson, Heinz-Otto Kreiss, and Arne Sundström,*Stability theory of difference approximations for mixed initial boundary value problems. II*, Math. Comp.**26**(1972), 649–686. MR**0341888**, https://doi.org/10.1090/S0025-5718-1972-0341888-3**[11]**Marianela Lentini and Herbert B. Keller,*Boundary value problems on semi-infinite intervals and their numerical solution*, SIAM J. Numer. Anal.**17**(1980), no. 4, 577–604. MR**584732**, https://doi.org/10.1137/0717049**[12]**P. A. Markowich,*Randwertprobleme auf Unendllichen Intervallen*, Dissertation, TU Wien, 1980.**[13]**A. Markowich, "Analysis of boundary value problems on infinite intervals,"*SIAM J. Appl. Math.*, v. 42, 1982, pp. 549-557.**[14]**Peter A. Markowich,*A theory for the approximation of solutions of boundary value problems on infinite intervals*, SIAM J. Math. Anal.**13**(1982), no. 3, 484–513. MR**653468**, https://doi.org/10.1137/0513033**[15]**B. S. Ng and W. H. Reid,*On the numerical solution of the Orr-Sommerfeld problem: asymptotic initial conditions for shooting methods*, J. Comput. Phys.**38**(1980), no. 3, 275–293. MR**609434**, https://doi.org/10.1016/0021-9991(80)90150-3**[16]**John E. Osborn,*Spectral approximation for compact operators*, Math. Comput.**29**(1975), 712–725. MR**0383117**, https://doi.org/10.1090/S0025-5718-1975-0383117-3**[17]**Friedrich Stummel,*Diskrete Konvergenz linearer Operatoren. I*, Math. Ann.**190**(1970/71), 45–92 (German). MR**0291870**, https://doi.org/10.1007/BF01349967**[18]**Friedrich Stummel,*Diskrete Konvergenz linearer Operatoren. II*, Math. Z.**120**(1971), 231–264 (German). MR**0291871**, https://doi.org/10.1007/BF01117498

Retrieve articles in *Mathematics of Computation*
with MSC:
34B25

Retrieve articles in all journals with MSC: 34B25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1982-0669637-6

Keywords:
Boundary value problems of linear equations,
spectral theory of boundary value problems,
boundedness of solutions,
asymptotic expansion,
theoretical approximation of solutions

Article copyright:
© Copyright 1982
American Mathematical Society