Analysis of a multilevel iterative method for nonlinear finite element equations

Authors:
Randolph E. Bank and Donald J. Rose

Journal:
Math. Comp. **39** (1982), 453-465

MSC:
Primary 65N30; Secondary 65H10

DOI:
https://doi.org/10.1090/S0025-5718-1982-0669639-X

MathSciNet review:
669639

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The multilevel iterative technique is a powerful technique for solving the systems of equations associated with discretized partial differential equations. We describe how this technique can be combined with a globally convergent approximate Newton method to solve nonlinear partial differential equations. We show that asymptotically only one Newton iteration per level is required; thus the complexity for linear and nonlinear problems is essentially equal.

**[1]**Ivo Babuška & A. K. Aziz, "Survey lectures on the mathematical foundations of the finite element method," in*The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations*, A. K. Aziz, Ed., Academic Press, New York, 1972, pp. 111-184. MR**0421106 (54:9111)****[2]**Randolph E. Bank & Todd F. Dupont, "An optimal order process for solving finite element equations,"*Math. Comp.*, v. 36, 1981, pp. 35-51. MR**595040 (82b:65113)****[3]**Randolph E. Bank, "A comparison of two multi-level iterative methods for non-symmetric and indefinite elliptic finite element equations,"*SIAM J. Numer. Anal.*, v. 18, 1981, pp. 724-743. MR**622706 (82f:65110)****[4]**Randolph E. Bank & Donald J. Rose, "Parameter selection for Newton-like methods applicable to nonlinear partial differential equations,"*SIAM J. Numer. Anal.*, v. 17, 1980, 806-822.**[5]**Randolph E. Bank & Donald J. Rose, "Global approximate Newton methods,"*Numer. Math.*, v. 37, 1981, pp. 279-295.**[6]**Randolph E. Bank & Andrew H. Sherman, "Algorithmic aspects of the multi-level solution of finite element equations," in*Sparse Matrix Proceedings*--1978, (I. S. Duff and G. W. Stewart, Eds.), SIAM, Philadelphia, Pa., 1979, pp. 62-89. MR**566371 (81g:65144)****[7]**Achi Brandt, "Multi-level adaptive solutions to boundary value problems,"*Math. Comp.*, v. 31, 1977, pp. 333-390. MR**0431719 (55:4714)****[8]**Achi Brandt & Steve McCormick, Private communication, 1980.**[9]**Wolfgang Hackbusch,*On the Convergence of a Multi-Grid Iteration Applied to Finite Element Equations*, Technical Report 77-8, Mathematisches Institut, Universität zu Köln, 1977.**[10]**Wolfgang Hackbusch, "On the fast solution of nonlinear elliptic equations,"*Numer. Math.*, v. 32, 1979, pp. 83-95. MR**525639 (80b:65128)****[11]**A. R. Hutson, "Role of dislocations in the electrical conductivity of*cds*,"*Phys. Rev. Lett.*, v. 46, 1981, pp. 1159-1162.**[12]**Lois Mansfield, "On the solution of nonlinear finite element systems,"*SIAM J. Numer. Anal.*, v. 17, 1980, pp. 752-765. MR**595441 (82a:65090)****[13]**R. A. Nicolaides, "On the convergence of an algorithm for solving finite element systems,"*Math. Comp.*, v. 31, 1977, pp. 892-906. MR**0488722 (58:8239)****[14]**Alfred H. Schatz, "An observation concerning Ritz-Galerkin methods with indefinite bilinear forms,"*Math. Comp.*, v. 28, 1974, pp. 959-962. MR**0373326 (51:9526)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
65H10

Retrieve articles in all journals with MSC: 65N30, 65H10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1982-0669639-X

Article copyright:
© Copyright 1982
American Mathematical Society