Complex Chebyshev polynomials on circular sectors with degree six or less

Authors:
U. Grothkopf and G. Opfer

Journal:
Math. Comp. **39** (1982), 599-615

MSC:
Primary 30E10; Secondary 65D20

DOI:
https://doi.org/10.1090/S0025-5718-1982-0669652-2

MathSciNet review:
669652

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the *n*th Chebyshev polynomial on the circular sector . This paper contains numerical values of and the corresponding coefficients of for and . Also all critical angles for are listed, where an angle is called critical when the number of absolute maxima of changes at that angle. All figures are given to six places. The positions (and hence the number) of extremal points of are presented graphically. The method consists of a combination of semi-infinite linear programming, finite linear programming, and Newton's method.

**[1]**M. Abramowitz & I. A. Stegun (Editors),*Handbook of Mathematical Functions*, fifth printing, Dover, New York, 1968.**[2]**J. P. Coleman & A. J. Monaghan,*Chebyshev Expansions for the Bessel Function**in the Complex Plane*, University of Durham, 1980. (Preprint.)**[3]**G. H. Elliott,*Polynomial Approximation in the Complex Plane Using Generalised Humbert Polynomials*, Lecture at Dundee Biennial Conference on Numerical Analysis, 1981.**[4]**Carl Geiger and Gerhard Opfer,*Complex Chebyshev polynomials on circular sectors*, J. Approx. Theory**24**(1978), no. 2, 93–118. MR**511466**, https://doi.org/10.1016/0021-9045(78)90001-1**[5]**K. Glashoff & S. Å. Gustafson,*Einführung in die lineare Optimierung*, Wissenschaftliche Buchgesellschaft, Darmstadt, 1978.**[6]**K. Glashoff and K. Roleff,*A new method for Chebyshev approximation of complex-valued functions*, Math. Comp.**36**(1981), no. 153, 233–239. MR**595055**, https://doi.org/10.1090/S0025-5718-1981-0595055-4**[7]**R. Hettich,*Numerical methods for nonlinear Chebyshev approximation*, Approximation in Theorie und Praxis (Proc. Sympos., Siegen, 1979) Bibliographisches Inst., Mannheim, 1979, pp. 139–156. MR**567658****[8]**Günter Meinardus,*Approximation of functions: Theory and numerical methods*, Expanded translation of the German edition. Translated by Larry L. Schumaker. Springer Tracts in Natural Philosophy, Vol. 13, Springer-Verlag New York, Inc., New York, 1967. MR**0217482****[9]**Gerhard Opfer,*An algorithm for the construction of best approximations based on Kolmogorov’s criterion*, J. Approx. Theory**23**(1978), no. 4, 299–317 (English, with German summary). MR**509560**, https://doi.org/10.1016/0021-9045(78)90082-5**[10]**R. L. Streit & A. H. Nuttall,*Linear Chebyshev Complex Function Approximation*, Technical Report 6403, Naval Underwater Systems Center, Newport, R. I., New London, Conn., 1981.

Retrieve articles in *Mathematics of Computation*
with MSC:
30E10,
65D20

Retrieve articles in all journals with MSC: 30E10, 65D20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1982-0669652-2

Article copyright:
© Copyright 1982
American Mathematical Society