Rational Chebyshev approximations for the Bessel functions , , ,

Authors:
C. A. Wills, J. M. Blair and P. L. Ragde

Journal:
Math. Comp. **39** (1982), 617-623

MSC:
Primary 65D20; Secondary 33A40, 41A50

DOI:
https://doi.org/10.1090/S0025-5718-1982-0669653-4

MathSciNet review:
669653

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This report presents near-minimax rational approximations for the Bessel functions , , , and for the complete range of *x*, with relative errors ranging down to . The first thirty zeros of each function are listed to 35D. The tabulated zeros and the McMahon asymptotic formulae may be used to construct an algorithm which retains relative accuracy in the neighborhood of zeros.

**[1]**M. Abramowitz & I. A. Stegun (Editors),*Handbook of Mathematical Functions*, Nat. Bur. Standards, Appl. Math. Series No. 55, U. S. Government Printing Office, Washington, D. C., 1965.**[2]**R. P. Brent, "A FORTRAN Multiple-Precision Arithmetic Package,"*ACM Trans. Math. Software*, v. 4, 1978, pp. 57-70.**[3]**C. W. Clenshaw and Susan M. Picken,*Chebyshev series for Bessel functions of fractional order*, National Physical Laboratory Mathematical Tables, Vol. 8, Her Majesty’s Stationery Office, London, 1966. MR**0203095****[4]**W. J. Cody, "The FUNPACK Package of Special Function Subroutines,"*ACM Trans. Math. Software*, v. 1, 1975, pp. 13-25.**[5]**W. J. Cody, R. M. Motley & L. W. Fullerton, "Coefficients for the approximation of ,"*AMD Technical Memorandum*#284, Argonne National Laboratory. (In preparation.)**[6]**Boro Döring,*Über die McMahon-Entwicklungen*, Z. Angew. Math. Phys.**18**(1967), 461–473 (German, with English summary). MR**0214272**, https://doi.org/10.1007/BF01601717**[7]**J. F. Hart, et al.,*Computer Approximations*, Wiley, New York, 1968.**[8]**K. Hayashi,*Tafeln der Besselschen, Theta, Kugel--und anderer Funktionen*, Springer-Verlag, Berlin, 1930.**[9]**J. H. Johnson & J. M. Blair,*REMES*2:*A FORTRAN Program to Calculate Rational Minimax Approximations to a Given Function*, Atomic Energy of Canada Limited, Report AECL-4210, Chalk River, Ontario, 1973.**[10]**Yudell L. Luke,*Mathematical functions and their approximations*, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR**0501762****[11]**S. Makinouchi,*Zeros of Bessel Functions**and**Accurate to Twenty-Nine Significant Digits*, Osaka University Technology Report No. 685, 1965.**[12]**C. Mesztenyi and C. Witzgall,*Stable evaluation of polynomials*, J. Res. Nat. Bur. Standards Sect. B**71B**(1967), 11–17. MR**0212994****[13]***Bessel functions. Part III: Zeros and associated values*, Royal Society Mathematical Tables, Vol. 7. Prepared under the direction of the Bessel Functions Panel of the Mathematical Tables Committee, Cambridge University Press, New York, 1960. MR**0119441****[14]**Jet Wimp,*Polynomial expansions of Bessel functions and some associated functions*, Math. Comp.**16**(1962), 446–458. MR**0148956**, https://doi.org/10.1090/S0025-5718-1962-0148956-3

Retrieve articles in *Mathematics of Computation*
with MSC:
65D20,
33A40,
41A50

Retrieve articles in all journals with MSC: 65D20, 33A40, 41A50

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1982-0669653-4

Keywords:
Rational Chebyshev approximations,
Bessel functions,
McMahon expansions

Article copyright:
© Copyright 1982
American Mathematical Society