Closed Expressions for \(\int_0^1 t^{-1} \log^{n-1} t \log^p (1 - t) \, dt \)

By K. S. Kölbig

Abstract. Closed expressions for the integral \(\int_0^1 t^{-1} \log^{n-1} t \log^p (1 - t) \, dt \), whose general form is given elsewhere, are listed for \(n = 1(1)9, p = 1(1)9 \). A formula is derived which allows an easy evaluation of these expressions by formula manipulation on a computer.

1. Introduction. At the beginning of this century, Nielsen discussed, in a little-known monograph [9], properties of a family of functions

\[S_{n,p}(x) = \int_0^1 t^{-1} \log^{n-1} t \log^p (1 - xt) \, dt \]

for positive integers \(n, p \), and complex \(x \). These functions include many special cases such as Euler's dilogarithm, Kummer's trilogarithm, the Spence functions and polylogarithms. As already proposed [4], it seems appropriate to call the family (1) Nielsen's generalized polylogarithms.

Although the monograph [9] contains quite a number of misprints and a few erroneous results, it does present a considerable amount of useful information, in particular transformation formulae relating \(S_{n,p}(x) \) to \(S_{n,p}(1/x) \) and \(S_{n,p}(1 - x) \). It is remarkable that these formulae, and consequently also those for \(S_{n,p}(1/(1 - x)) \), \(S_{n,p}((x - 1)/x) \), and \(S_{n,p}(x/(x - 1)) \) contain, apart from logarithms and constants, only functions \(S_{n,p}(x) \). However, as far as the author knows, the important formulae of [9] have never found their way into any of the relevant handbooks.

Interest in these functions revived some time ago, at least for the case \(p = 1 \), in the context of multi-dimensional integration of rational functions in quantum electrodynamics (see, for example, [1], [8]). Their properties are also of interest in group theory and geometry [7]. The book of Lewin [6] gives many formulae and properties of \(S_{n,1}(x) \). A general discussion of Nielsen's monograph is given in [4].

2. The Values \(s_{n,p} = S_{n,p}(1) \). The purpose of this note is to give explicit expressions for the special values

\[s_{n,p} = S_{n,p}(1) = \frac{(-1)^{n+p-1}}{(n-1)!p!} \int_0^1 t^{-1} \log^{n-1} t \log^p (1 - t) \, dt, \]

at least for some \(n \) and \(p \). It is easy to show that \(s_{n,p} = s_{p,n} \), and hence we can restrict \(p \) to \(n \geq p \). A closed expression for \(s_{n,p} \) is given in [4] (in implicit form also in

Received September 15, 1981; revised April 7, 1982.
1980 Mathematics Subject Classification. Primary 33A70.

©1982 American Mathematical Society

0025-5718/82/0000-0381/010.25

647
(3) \[s_{n,p} = \sum_{k=1}^{p} \frac{(-1)^{k+1}}{k!} \sum_{m_i} H_p(m_1, \ldots, m_k) \frac{\zeta(m_1) \cdots \zeta(m_k)}{m_1 \cdots m_k}, \]

where

(4) \[H_p(m_1, \ldots, m_k) = \sum_{p_i} \left(\frac{m_1}{p_1} \right) \cdots \left(\frac{m_k}{p_k} \right). \]

The sum over \(m_i \) is to be taken over all sets of integers \(\{m_i\} \) \((i = 1, \ldots, k)\) which satisfy

(5) \[m_i \geq 2, \quad \sum_{i=1}^{k} m_i = n + p, \]

and the sum over \(p_i \) over all sets of integers \(\{p_i\} \) \((i = 1, \ldots, k)\) which satisfy

(6) \[1 \leq p_i \leq m_i - 1, \quad \sum_{i=1}^{k} p_i = p. \]

The function

(7) \[\zeta(m) = \sum_{k=1}^{\infty} k^{-m} \]

is the Riemann zeta function for integer argument. Nielsen remarked that the functions \(S_{n,p}(x) \) are probably the simplest analytic functions which coincide with \(\zeta(m) \) for special values of its arguments. He added that he was not able to use his theory of \(S_{n,p}(x) \) to find expressions for \(\zeta(2\mu + 1) \) analogous to the known expressions for \(\zeta(2\mu) \).

Nielsen [9] formulated a theorem about the structure of \(s_{n,p} \) and gave the principle of the proof. He also calculated the cases \(p \leq 3 \). The case \(p = 1 \) is trivial, giving

(8) \[\int_{0}^{1} t^{n-1} \log^{n-1} t \log(1 - t) \, dt = (-1)^{n} (n - 1)! s_{n,1} = (-1)^{n} (n - 1)! \zeta(n + 1). \]

The case \(p = 2 \) can also be handled easily, but the \(k = 3 \) term in (3) for \(p = 3 \) is somewhat more involved, and Nielsen's final expression [9, Section 18 (19), (20)] is incorrect. However, the expression for \(s_{73} \) given as an example in [9] differs from the correct expression only by a difference in the coefficient of \(\zeta(2) \zeta^2(4) \) (\(\frac{1}{2} \) instead of \(\frac{1}{3} \)), and this could be due to a misprint.

Writing (3) as

(9) \[s_{n,p} = \sum_{k=1}^{p} \frac{(-1)^{k+1}}{k!} \alpha_k(n, p), \]

it is easy to find from (4) the following expressions for \(\alpha_k(n, p) \) in the case of some special values of \(p \) and \(k \):

(10) \[\alpha_1(n, p) = \frac{(n + p - 1)!}{n! p!} \zeta(n + p), \]
(11) \[\alpha_2(n, 2) = \sum_{\nu=2}^{n} \xi(\nu)\xi(n - \nu + 2), \]

(12) \[\alpha_n(n, n) = \xi^n(2). \]

For \(k = 2, p = 3 \), we have from (4), for \(\nu = 2, \ldots, n + 1 \),

\[H_3(n - \nu + 3, \nu) = \xi_\nu(2) \left(\begin{array}{c} n - \nu + 3 \\ 1 \end{array} \right) + \xi_{\nu+1}(n - \nu + 3) \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \]

and

(13) \[\frac{H_3(n - \nu + 3, \nu)}{(n - \nu + 3)\nu} = \begin{cases} \frac{3}{2}n & \text{if } \nu = 2, \nu = n + 1, \\ \frac{1}{2}(n + 1) & \text{if } \nu = 3, \ldots, n, \end{cases} \]

where \(\xi_{\nu, \mu} = 0 \) for \(\nu = \mu \) and \(\xi_{\nu, \mu} = 1 \) for \(\nu \neq \mu \), so that

(14) \[\alpha_2(n, 3) = \frac{n\xi(2)\xi(n + 1) + \frac{1}{2}(n + 1) \sum_{\nu=3}^{n} \xi(\nu)\xi(n - \nu + 3)}{\sum_{\nu=2}^{n} (n - \nu + 2)\xi(\nu)\xi(n - \nu + 3)}. \]

In the case \(k = 2, p = 4 \), one finds for \(\nu = 2, \ldots, n + 2 \),

\[H_4(n - \nu + 4, \nu) = \xi_\nu(2)\xi_\nu(3) \left(\begin{array}{c} n - \nu + 4 \\ 1 \end{array} \right) + \xi_{\nu+2}(n - \nu + 4) \left(\begin{array}{c} 2 \\ 2 \end{array} \right) \]

Thus

(15) \[\frac{H_4(n - \nu + 4, \nu)}{(n - \nu + 4)\nu} = \begin{cases} \frac{1}{6}n(n + 1) & \text{if } \nu = 2, \nu = n + 2, \\ \frac{1}{6}n(n + 2) & \text{if } \nu = 3, \nu = n + 1, \\ \frac{1}{12} \left[\nu^2 - (n + 4)\nu + 2n^2 + 7n + 7 \right] & \text{if } \nu = 4, \ldots, n, \end{cases} \]

and therefore

(16) \[\alpha_2(n, 4) = \frac{1}{3}n(n + 1)\xi(2)\xi(n + 2) + \frac{1}{3}n(n + 2)\xi(3)\xi(n + 1) + \frac{1}{12} \sum_{\nu=4}^{n} \left[\nu^2 - (n + 4)\nu + 2n^2 + 7n + 7 \right]\xi(\nu)\xi(n - \nu + 4). \]

For larger values of \(p \), \(\alpha_2(n, p) \) becomes more and more complicated.

For \(k = p = 3 \), we see that \(p_1 = p_2 = p_3 = 1 \) and \(H_3(m_1, m_2, m_3) = m_1m_2m_3 \).

The sum over \(m_i \) in (3) therefore equals the sum over the products \(\xi(m_1)\xi(m_2)\xi(m_3) \) for all partitions \(\{m_1, m_2, m_3\} \) of \(n + 3 \) satisfying \(2 \leq m_i \leq \lfloor (n + 3)/3 \rfloor \), with a weight for possible permutations, where \(\lfloor \xi \rfloor \) denotes the integer part of \(\xi \). This leads to

(17) \[\alpha_3(n, 3) = \sum_{\mu=2}^{n} \xi(\mu) \sum_{\nu=\mu}^{n} \omega(n; \mu, \nu)\xi(\nu)\xi(n + 3 - \nu - \mu), \]
where $\mu^* = [(n + 3)/3]$, $\nu^* = [(n - \mu + 3)/2]$, and
\begin{equation}
(18) \quad \omega(n; \mu, \nu) = \begin{cases}
1 & \text{if } \mu = \nu \text{ and } 3\mu = n + 3, \\
3 & \text{if } \mu = \nu \text{ and } 3\mu \neq n + 3 \text{ or } \\
1 & \text{if } \mu \neq \nu \text{ and } 2\mu + \nu = n + 3 \text{ or } \\
6 & \text{otherwise.}
\end{cases}
\end{equation}

From (1), (10), and (11) it follows that
\begin{equation}
\int_0^1 t^{-1} \log^{n-1} t \log^2(1 - t) \, dt = 2(-1)^{n-1} (n - 1)! s_{n,2}
\end{equation}
\begin{equation}
= (-1)^{n-1} (n - 1)! \left[(n + 1)\xi(n + 2) - \sum_{\nu = 2}^n \xi(\nu)\xi(n - \nu + 2)\right],
\end{equation}

and from (10), (14), and (17),
\begin{equation}
\int_0^1 t^{-1} \log^{n-1} t \log^3(1 - t) \, dt = 6(-1)^n (n - 1)! s_{n,3}
\end{equation}
\begin{equation}
= (-1)^n (n - 1)! \left[(n + 1)(n + 2)\xi(n + 3)
\end{equation}
\begin{equation*}
- 3 \sum_{\nu = 2}^n (n - \nu + 2)\xi(\nu)\xi(n - \nu + 3)
\end{equation*}
\begin{equation*}
+ \sum_{\mu = 2}^{\mu^*} \xi(\mu) \sum_{\nu = \mu}^{\nu^*} \omega(n; \mu, \nu)\xi(\nu)\xi(n + 3 - \nu - \mu)\right].
\end{equation*}

This last formula corrects formula [9, Section 18 (19)] of Nielsen.

For arbitrary n and p, it is obvious that (3) can, in practice, be evaluated only by means of a computer. Even then, the problem is complicated. The main task consists in constructing the sets $\{m_i\}$ and $\{p_i\}$. Because of the fact that all permutations have to be taken into account, the number of these sets grows rapidly with increasing values of $n + p$. We have constructed these sets up to $n = p = 9$ by means of a FORTRAN program. As an example, their number is shown for $n = p = 9$ in Table 1. Therefore $\sum \{m_i\}\{p_i\} = 85376$ sets would have to be analyzed in this case. Because of the condition $1 \leq p_i \leq m_i - 1$, only 12870 of these would contribute to the 88 different terms in the result (3) for $s_{9,9}$.

Table 1

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>${m_i}$</td>
<td>1</td>
<td>15</td>
<td>91</td>
<td>286</td>
<td>495</td>
<td>462</td>
<td>210</td>
<td>36</td>
<td>1</td>
</tr>
<tr>
<td>${p_i}$</td>
<td>1</td>
<td>8</td>
<td>28</td>
<td>56</td>
<td>70</td>
<td>56</td>
<td>28</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

The complicated calculations required for the evaluation of (3) may be avoided by using an alternative expression, well-adapted to evaluation by formula-manipulation.
systems such as REDUCE [8]. As in the derivation of (3), we start from the relation [4, 9]:

\[s_{n,p} = \frac{(-1)^{n+p-1}}{(n-1)!p!} \frac{\partial^{n+p-1}}{\partial \beta^{n-1} \partial \alpha^p} \left(\frac{\gamma(1 + \alpha)\gamma(1 + \beta)}{\Gamma(1 + \alpha + \beta)} \right) \bigg|_{\alpha=\beta=0} . \]

We now introduce the power series [2, No. 8.321]

\[\Gamma(1 + x) = \sum_{k=0}^{\infty} b_k x^k \quad (|x| < 1), \]

\[\frac{1}{\Gamma(1 + x)} = \sum_{k=0}^{\infty} a_k x^k, \]

where \(a_0 = b_0 = 1 \), and

\[a_k = \frac{1}{k} \sum_{m=1}^{k} (-1)^{m+1} \xi(m) a_{k-m}, \]

\[b_k = -\frac{1}{k} \sum_{m=1}^{k} (-1)^{m+1} \xi(m) b_{k-m} \quad (k > 0), \]

with the definition \(\xi(1) = \gamma \) (Euler's constant). Then, performing the differentiations with respect to \(\alpha \) in (21), and using the relation

\[\sum_{\rho=0}^{p} b_{p-\rho} a_{\rho} = 0 \quad (p > 0), \]

we obtain

\[\frac{\partial^p}{\partial \alpha^p} \left(\frac{\gamma(1 + \alpha)}{\Gamma(1 + \alpha + \beta)} \right) \bigg|_{\alpha=0} \]

\[= \sum_{\rho=0}^{p} \binom{p}{\rho} \left(\sum_{k=0}^{\infty} a_k \sum_{\kappa=0}^{k} \binom{k}{\kappa} \alpha^\kappa \beta^{k-\kappa} \right)^{(p)} \left(\sum_{k=0}^{\infty} b_k \alpha^k \right)^{(p-\rho)} \bigg|_{\alpha=0} \]

\[= p! \sum_{\rho=0}^{p} b_{p-\rho} \sum_{k=\rho+1}^{\infty} a_k \binom{k}{\rho} \beta^{k-\rho} = H(\beta). \]

Similarly

\[\frac{\partial^{n-1}}{\partial \beta^{n-1}} \frac{1}{\beta} H(\beta) \Gamma(1 + \beta) \]

\[= p! \sum_{\nu=0}^{n-1} \binom{n-1}{\nu} \left[H(\beta)/\beta \right]^{(\nu)} \left(\sum_{k=0}^{\infty} b_k \beta^k \right)^{(n-\nu-1)} \bigg|_{\beta=0}, \]

and therefore, finally,

\[s_{n,p} = (-1)^{n+p-1} \sum_{\nu=0}^{n-1} b_{n-\nu-1} \sum_{\rho=0}^{p} \binom{\nu + \rho + 1}{\rho} b_{p-\rho} a_{\nu+\rho+1}. \]

This expression, although revealing less of the structure (already inferred by Nielsen [9]) of \(s_{n,p} \) than formula (3), namely that \(s_{n,p} \) can be expressed as a homogeneous polynomial of "degree" \(n + p \) in the terms \(\xi(m) \), \((2 \leq m \leq n + p)\), with rational
coefficients, is much more suitable for actual computation. Using a formula-manipulation system, the evaluation of (27) is in fact straightforward once the expressions (23) for \(a_k \) (0 \(\leq \) \(k \) \(\leq \) \(n + p \)) and \(b_k \) [0 \(\leq \) \(k \) \(\leq \) max(\(n - 1 \), \(p \))] in terms of \(\zeta(m) \) have been initially established. It follows from (5) that, at least, all terms involving \(\zeta(1) = \gamma \) will cancel in the final expression for (27). For example, the special cases \(s_{n,1} \) and \(s_{1,p} \) reduce to a single term:

\[
s_{n,1} = (-1)^n \sum_{\nu=0}^{n-1} b_{n-\nu-1} \left[(\nu + 2) a_{\nu+2} + b_1 a_{\nu+1} \right] = \zeta(n + 1)
\]

and

\[
s_{1,p} = (-1)^p \sum_{\rho=0}^{p} (\rho + 1) b_{p-\rho} a_{\rho+1} = \zeta(\rho + 1).
\]

The results obtained with REDUCE have been checked by evaluating the definition integral (2) by numerical integration, replacing the limits 0 and 1 by \(\epsilon = 10^{-8} \) and \(1 - \epsilon \), respectively, and using Stieltjes' 32 decimal table [10] of \(\zeta(m) \), \(m = 2(1)70 \), which is reproduced in [9], for the evaluation of \(s_{n,p} \).

We add here that the substitution \(t = \sin^2 \theta \) in (2) leads to the integral [6],

\[
s_{n,p} = -\frac{(-2)^{n+p}}{(n-1)!p!} \int_0^{\pi/2} \cot^n \theta \log^n \sin t \log^p \cos t \, d\theta.
\]

A closed expression for a similar integral,

\[
R_{n,p} = \int_0^{\pi/2} \log^n t \log^p t \, dt \quad (n > 0, p > 0),
\]

has been given in [5], with examples up to \(n = p = 4 \).

3. A Table of the Integral. We list the expressions for \(s_{n,p} \), \(n = 1(1)9, p = 1(1)n \). The values for the integral in (2) itself,

\[
r_{n,p} = \int_0^1 t^{n-1} \log^n t \log^p (1 - t) \, dt = (-1)^{n+p-1} (n - 1)! p! s_{n,p},
\]

would lead for higher \(n \) or \(p \) to rather large coefficients. The reference work [2, No. 4.2912] lists only the case \(n = p = 1 \), whereas Lewin [6] gives (31) for \(n = 2, 3, 4 \), and \(p = 2 \).

Using the well-known relation [2, No. 9.5421],

\[
\zeta(2\mu) = \frac{2^{2\mu-1} \pi^{2\mu} | B_{2\mu} |}{(2\mu)!},
\]

where \(B_{2\mu} \) are the Bernoulli numbers, the expressions for \(r_{n,p} \) simplify to some extent. We also give these values for \(n = 1(1)7, p = 1(1)n \).

\[
s_{11} = \zeta(2),
\]
\[
s_{21} = \zeta(3),
\]
\[
s_{22} = -\frac{1}{2} \zeta^2(2) + \frac{1}{3} \zeta(4),
\]
\[
s_{31} = \zeta(4),
\]
\[
s_{32} = -\zeta(2) \zeta(3) + 2 \zeta(5),
\]
\[s_{33} = \frac{1}{6} \zeta^3(2) - \frac{1}{4} \zeta(2) \zeta(4) - \zeta^2(3) + \frac{19}{3} \zeta(6), \]
\[s_{41} = \zeta(5), \]
\[s_{42} = -\zeta(2) \zeta(4) - \frac{1}{2} \zeta^2(3) + \frac{3}{5} \zeta(6), \]
\[s_{43} = \frac{1}{3} \zeta^2(2) \zeta(3) - 2 \zeta(2) \zeta(5) - \frac{1}{3} \zeta(3) \zeta(4) + 5 \zeta(7), \]
\[s_{44} = -\frac{1}{36}\zeta^4(2) + \frac{7}{36} \zeta^2(2) \zeta(4) + \zeta(2) \zeta^2(3) - \frac{19}{10} \zeta(2) \zeta(6) - 4 \zeta(3) \zeta(5) \]
\[- \frac{1}{12} \zeta^2(4) + \frac{33}{4} \zeta(8), \]
\[r_{11} = -\frac{1}{6} \pi^2, \]
\[r_{21} = \zeta(3), \]
\[r_{22} = -\frac{1}{180} \pi^4, \]
\[r_{31} = -\frac{1}{45} \pi^4, \]
\[r_{32} = -\frac{2}{3} \pi^2 \zeta(3) + 8 \zeta(5), \]
\[r_{33} = -\frac{23}{1260} \pi^6 + 12 \zeta^2(3), \]
\[r_{41} = 6 \zeta(5), \]
\[r_{42} = -\frac{1}{105} \pi^6 + 6 \zeta^2(3), \]
\[r_{43} = -\frac{1}{5} \pi^4 \zeta(3) - 12 \pi^2 \zeta(5) + 180 \zeta(7), \]
\[r_{44} = -\frac{1}{1800} \pi^8 - 24 \pi^2 \zeta^2(3) + 576 \zeta(3) \zeta(5). \]

The remaining expressions for \(s_{n,p}, n = 5(1)9, p = 1(1)n, \) and \(r_{n,p}, n = 5(1)7, p = 1(1)n, \) are given in the microfiche section at the end of this issue. Numerical values of \(s_{n,p} \) with 21 digits are presented in Table 2.

Table 2

<table>
<thead>
<tr>
<th>(n)</th>
<th>(p)</th>
<th>(S_{n,p})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1 \times 10^9</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.20205 \times 10^{10}</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2.70580 \times 10^9</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1.08232 \times 10^{10}</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>9.65511 \times 10^9</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1.74898 \times 10^9</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1.03692 \times 10^9</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4.05368 \times 10^9</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4.12316 \times 10^8</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6.02891 \times 10^8</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1.01734 \times 10^8</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1.83559 \times 10^8</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1.10762 \times 10^8</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>1.06090 \times 10^8</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1.29078 \times 10^8</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1.00834 \times 10^8</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>8.65052 \times 10^7</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>3.20419 \times 10^7</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>2.08107 \times 10^7</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>1.81177 \times 10^7</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1.88257 \times 10^7</td>
</tr>
</tbody>
</table>

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Table 2 (continued)

<table>
<thead>
<tr>
<th>n</th>
<th>p</th>
<th>$s_{n,p}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>1.00407</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>4.17024</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>9.70014</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>4.37446</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>2.79046</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>2.19761</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1.99035</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1.00200</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2.03771</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>3.02392</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>9.63193</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>4.58067</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>2.78108</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>1.98864</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1.59526</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1.00099</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1.00397</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>9.61339</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>2.19049</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>7.86919</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>3.73432</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>2.13492</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>1.39313</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1.00261</td>
</tr>
</tbody>
</table>

European Organization for Nuclear Research
CERN
CH–1211 Geneva 23, Switzerland

10. T. J. Stieltjes, “Table des valeurs des sommes $S_n = \sum_{i=1}^{\infty} n^{-s}$,” *Acta Math.*, v. 10, 1887, pp. 299–302.