Closed Expressions for $\int_0^1 t^{-1} \log^{n-1} t \log^p (1 - t) \, dt$

By K. S. Kolbig

Abstract. Closed expressions for the integral $\int_0^1 t^{-1} \log^{n-1} t \log^p (1 - t) \, dt$, whose general form is given elsewhere, are listed for $n = 1(1)9$, $p = 1(1)9$. A formula is derived which allows an easy evaluation of these expressions by formula manipulation on a computer.

1. Introduction. At the beginning of this century, Nielsen discussed, in a little-known monograph [9], properties of a family of functions

\begin{equation}
S_{n,p}(x) = \sum_{l=1}^{\infty} \frac{x^l}{l!} \int_0^1 t^{-1} \log^{n-1} t \log^p (1 - xt) \, dt
\end{equation}

for positive integers n, p, and complex x. These functions include many special cases such as Euler's dilogarithm, Kummer's trilogarithm, the Spence functions and polylogarithms. As already proposed [4], it seems appropriate to call the family (1) Nielsen's generalized polylogarithms.

Although the monograph [9] contains quite a number of misprints and a few erroneous results, it does present a considerable amount of useful information, in particular transformation formulae relating $S_{n,p}(x)$ to $S_{n,p}(1/x)$ and $S_{n,p}(1 - x)$. It is remarkable that these formulae, and consequently also those for $S_{n,p}(1/(1 - x))$, $S_{n,p}((x - 1)/x)$, and $S_{n,p}(x/(x - 1))$ contain, apart from logarithms and constants, only functions $S_{n,n}(x)$. However, as far as the author knows, the important formulae of [9] have never found their way into any of the relevant handbooks.

Interest in these functions revived some time ago, at least for the case $p = 1$, in the context of multi-dimensional integration of rational functions in quantum electrodynamics (see, for example, [1], [8]). Their properties are also of interest in group theory and geometry [7]. The book of Lewin [6] gives many formulae and properties of $S_{n,1}(x)$. A general discussion of Nielsen's monograph is given in [4].

2. The Values $s_{n,p} = S_{n,p}(1)$. The purpose of this note is to give explicit expressions for the special values

\begin{equation}
s_{n,p} = S_{n,p}(1) = \frac{(-1)^{n+p-1}}{(n-1)!p!} \int_0^1 t^{-1} \log^{n-1} t \log^p (1 - t) \, dt,
\end{equation}

at least for some n and p. It is easy to show that $s_{n,p} = s_{p,n}$, and hence we can restrict p to $n \geq p$. A closed expression for $s_{n,p}$ is given in [4] (in implicit form also in
[6]), which reads

\[s_{n,p} = \sum_{k=1}^{p} \frac{(-1)^{k+1}}{k!} \sum_{m_i} \frac{H_p(m_1,\ldots,m_k)}{m_1 \cdots m_k} \zeta(m_1) \cdots \zeta(m_k), \]

where

\[H_p(m_1,\ldots,m_k) = \sum_{p_i} \binom{m_1}{p_1} \cdots \binom{m_k}{p_k}. \]

The sum over \(m_i \) is to be taken over all sets of integers \(\{m_i\} (i = 1,\ldots,k) \) which satisfy

\[m_i \geq 2, \quad \sum_{i=1}^{k} m_i = n + p, \]

and the sum over \(p_i \) over all sets of integers \(\{p_i\} (i = 1,\ldots,k) \) which satisfy

\[1 \leq p_i \leq m_i - 1, \quad \sum_{i=1}^{k} p_i = p. \]

The function

\[\zeta(m) = \sum_{k=1}^{\infty} k^{-m} \]

is the Riemann zeta function for integer argument. Nielsen remarked that the functions \(S_{n,p}(x) \) are probably the simplest analytic functions which coincide with \(\zeta(m) \) for special values of its arguments. He added that he was not able to use his theory of \(S_{n,p}(x) \) to find expressions for \(\zeta(2\mu + 1) \) analogous to the known expressions for \(\zeta(2\mu) \).

Nielsen [9] formulated a theorem about the structure of \(s_{n,p} \) and gave the principle of the proof. He also calculated the cases \(p \leq 3 \). The case \(p = 1 \) is trivial, giving

\[\int_{0}^{1} t^{-1} \log^{n-1} t \log(1 - t) \, dt = (-1)^{n}(n - 1)! s_{n,1} = (-1)^{n}(n - 1)! \zeta(n + 1). \]

The case \(p = 2 \) can also be handled easily, but the \(k = 3 \) term in (3) for \(p = 3 \) is somewhat more involved, and Nielsen's final expression [9, Section 18 (19), (20)] is incorrect. However, the expression for \(s_{7,3} \) given as an example in [9] differs from the correct expression only by a difference in the coefficient of \(\zeta(2) \zeta(4) (\frac{1}{12} \) instead of \(\frac{1}{2} \)), and this could be due to a misprint.

Writing (3) as

\[s_{n,p} = \sum_{k=1}^{p} \frac{(-1)^{k+1}}{k!} \alpha_k(n, p), \]

it is easy to find from (4) the following expressions for \(\alpha_k(n, p) \) in the case of some special values of \(p \) and \(k \):

\[\alpha_1(n, p) = \frac{(n + p - 1)!}{n!p!} \zeta(n + p), \]
CLOSED EXPRESSIONS FOR \(\int_0^1 t^{-1} \log^{n-1} t \log^n (1 - t) \, dt \)

(11) \[\alpha_2(n, 2) = \sum_{\nu=2}^{n} \xi(\nu)\xi(n - \nu + 2), \]

(12) \[\alpha_n(n, n) = \xi^n(2). \]

For \(k = 2, p = 3 \), we have from (4), for \(\nu = 2, \ldots, n + 1, \)

\[H_3(n - \nu + 3, \nu) = \varepsilon_{\nu,2}\left(\begin{array}{c} n - \nu + 3 \\ 1 \end{array}\right)\left(\begin{array}{c} \nu \\ 2 \end{array}\right) + \varepsilon_{\nu,n+1}\left(\begin{array}{c} n - \nu + 3 \\ 2 \end{array}\right)\left(\begin{array}{c} 1 \\ 1 \end{array}\right) \]

and

(13) \[\frac{H_3(n - \nu + 3, \nu)}{(n - \nu + 3)\nu} = \begin{cases} \frac{1}{3}n & \text{if } \nu = 2, \nu = n + 1, \\ \frac{1}{3}(n + 1) & \text{if } \nu = 3, \ldots, n, \end{cases} \]

where \(\varepsilon_{\nu,\mu} = 0 \) for \(\nu = \mu \) and \(\varepsilon_{\nu,\mu} = 1 \) for \(\nu \neq \mu \), so that

(14) \[\alpha_2(n, 3) = n\xi(2)\xi(n + 1) + \frac{1}{2}(n + 1) \sum_{\nu=3}^{n} \xi(\nu)\xi(n - \nu + 3) \]

In the case \(k = 2, p = 4 \), one finds for \(\nu = 2, \ldots, n + 2, \)

\[H_4(n - \nu + 4, \nu) = \varepsilon_{\nu,2}\varepsilon_{\nu,3}\left(\begin{array}{c} n - \nu + 4 \\ 1 \end{array}\right)\left(\begin{array}{c} \nu \\ 3 \end{array}\right) + \varepsilon_{\nu,2}\varepsilon_{\nu,n+2}\left(\begin{array}{c} n - \nu + 4 \\ 2 \end{array}\right)\left(\begin{array}{c} 1 \\ 1 \end{array}\right) + \varepsilon_{\nu,n+1}\varepsilon_{\nu,n+2}\left(\begin{array}{c} n - \nu + 4 \\ 3 \end{array}\right)\left(\begin{array}{c} \nu \\ 1 \end{array}\right). \]

Thus

(15) \[\frac{H_4(n - \nu + 4, \nu)}{(n - \nu + 4)\nu} = \begin{cases} \frac{1}{6}n(n + 1) & \text{if } \nu = 2, \nu = n + 2, \\ \frac{1}{6}n(n + 2) & \text{if } \nu = 3, \nu = n + 1, \\ \frac{1}{12}\left[\nu^2 - (n + 4)\nu + 2n^2 + 7n + 7\right] & \text{if } \nu = 4, \ldots, n, \end{cases} \]

and therefore

(16) \[\alpha_2(n, 4) = \frac{1}{3}n(n + 1)\xi(2)\xi(n + 2) + \frac{1}{3}n(n + 2)\xi(3)\xi(n + 1) \]

For larger values of \(p, \alpha_2(n, p) \) becomes more and more complicated.

For \(k = p = 3 \), we see that \(p_1 = p_2 = p_3 = 1 \) and \(H_3(m_1, m_2, m_3) = m_1m_2m_3 \).

The sum over \(m_i \) in (3) therefore equals the sum over the products \(\xi(m_1)\xi(m_2)\xi(m_3) \) for all partitions \(\{m_1, m_2, m_3\} \) of \(n + 3 \) satisfying \(2 \leq m_i \leq [(n + 3)/3] \), with a weight for possible permutations, where \(\lfloor \xi \rfloor \) denotes the integer part of \(\xi \). This leads to

(17) \[\alpha_3(n, 3) = \sum_{\mu=2}^{\mu^*} \sum_{\nu=\mu}^{\nu^*} \omega(n; \mu, \nu)\xi(\nu)\xi(n + 3 - \nu - \mu), \]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where \(\mu^* = \lfloor \frac{n + 3}{3} \rfloor, \nu^* = \lfloor \frac{n - \mu + 3}{2} \rfloor \), and
\[
\omega(n; \mu, \nu) = \begin{cases}
1 & \text{if } \mu = \nu \text{ and } 3\mu = n + 3, \\
3 & \text{if } \mu = \nu \text{ and } 3\mu \neq n + 3 \text{ or} \\
& \text{if } \mu \neq \nu \text{ and } 2\mu + \nu = n + 3 \text{ or} \\
& \text{if } \mu \neq \nu \text{ and } \mu + 2\nu = n + 3 \\
6 & \text{otherwise.}
\end{cases}
\]

From (1), (10), and (11) it follows that
\[
\int_0^1 t^{-1} \log^n t \log^2(1 - t) dt = 2(-1)^{n-1}(n - 1)! s_{n,2}
\]
(19)
\[
= (-1)^{n-1}(n - 1)! \left[(n + 1)\xi(n + 2) - \sum_{\nu=2}^{n} \xi(\nu)\xi(n - \nu + 2) \right],
\]
and from (10), (14), and (17),
\[
\int_0^1 t^{-1} \log^n t \log^3(1 - t) dt = 6(-1)^{n}(n - 1)! s_{n,3}
\]
(20)
\[
= (-1)^{n}(n - 1)! \left[(n + 1)(n + 2)\xi(n + 3) - 3 \sum_{\nu=2}^{n} (n - \nu + 2)\xi(\nu)\xi(n - \nu + 3) \\
+ \sum_{\mu=2}^{\mu^*} \xi(\mu) \sum_{\nu=\mu}^{\nu^*} \omega(n; \mu, \nu)\xi(\nu)\xi(n + 3 - \nu - \mu) \right].
\]

This last formula corrects formula [9, Section 18 (19)] of Nielsen.

For arbitrary \(n \) and \(\mu \), it is obvious that (3) can, in practice, be evaluated only by means of a computer. Even then, the problem is complicated. The main task consists in constructing the sets \(\{m_i\} \) and \(\{p_i\} \). Because of the fact that all permutations have to be taken into account, the number of these sets grows rapidly with increasing values of \(n + \mu \). We have constructed these sets up to \(n = \mu = 9 \) by means of a FORTRAN program. As an example, their number is shown for \(n = \mu = 9 \) in Table 1. Therefore \(\Sigma \{m_i\}\{p_i\} = 85376 \) sets would have to be analyzed in this case. Because of the condition \(1 \leq p_i \leq m_i - 1 \), only 12870 of these would contribute to the 88 different terms in the result (3) for \(s_{9,9} \).

| \(k \) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|
| \(\{m_i\} \) | 1 | 15 | 91 | 286 | 495 | 462 | 210 | 36 | 1 |
| \(\{p_i\} \) | 1 | 8 | 28 | 56 | 70 | 56 | 28 | 8 | 1 |

The complicated calculations required for the evaluation of (3) may be avoided by using an alternative expression, well-adapted to evaluation by formula-manipulation.
systems such as REDUCE [8]. As in the derivation of (3), we start from the relation [4, 9]:

\[s_{n,p} = \frac{(-1)^{n+p-1}}{(n-1)!} \frac{\partial^{n+p-1}}{\partial \beta^{n-1} \partial \alpha^p} \left. \frac{1}{\Gamma(1+\alpha)\Gamma(1+\beta)} \right|_{\alpha=\beta=0}. \]

We now introduce the power series [2, No. 8.321]

\[\Gamma(1 + x) = \sum_{k=0}^{\infty} b_k x^k \quad (|x| < 1), \]

\[\frac{1}{\Gamma(1 + x)} = \sum_{k=0}^{\infty} a_k x^k, \]

where \(a_0 = b_0 = 1 \), and

\[a_k = \frac{1}{k} \sum_{m=1}^{k} (-1)^{m+1} \zeta(m) a_{k-m}, \]

\[b_k = -\frac{1}{k} \sum_{m=1}^{k} (-1)^{m+1} \zeta(m) b_{k-m} \quad (k > 0), \]

with the definition \(\zeta(1) = \gamma \) (Euler's constant). Then, performing the differentiations with respect to \(\alpha \) in (21), and using the relation

\[\sum_{\rho=0}^{p} b_{p-\rho} a_{\rho} = 0 \quad (p > 0), \]

we obtain

\[\frac{\partial^p}{\partial \alpha^p} \left. \frac{\Gamma(1 + \alpha)}{\Gamma(1 + \alpha + \beta)} \right|_{\alpha=0} \]

\[= \sum_{\rho=0}^{p} \binom{p}{\rho} \left(\sum_{k=0}^{\infty} a_k \sum_{\kappa=0}^{k} \binom{k}{\kappa} \alpha^\kappa \beta^{k-\kappa} \right)^{(\rho)} \left(\sum_{k=0}^{\infty} b_k \alpha^k \right)^{(p-\rho)} \bigg|_{\alpha=0} \]

\[= p! \sum_{\rho=0}^{p} b_{p-\rho} \sum_{k=\rho}^{\infty} a_k \binom{k}{\rho} \beta^{k-\rho} = H(\beta). \]

Similarly

\[\frac{\partial^{n-1}}{\partial \beta^{n-1}} \frac{1}{\beta} H(\beta) \Gamma(1 + \beta) \]

\[= p! \sum_{\nu=0}^{n-1} \left(\begin{array}{c} n-1 \\ \nu \end{array} \right) [H(\beta)/\beta]^\nu \left(\sum_{k=0}^{\infty} b_k \beta^k \right)^{(n-\nu-1)} \bigg|_{\beta=0}, \]

and therefore, finally,

\[s_{n,p} = \frac{(-1)^{n+p-1}}{\Gamma(1+\alpha)\Gamma(1+\beta)} \frac{1}{\Gamma(1+\alpha+\beta)} \left. \Gamma(1+\alpha)\Gamma(1+\beta) \right|_{\alpha=\beta=0}. \]

This expression, although revealing less of the structure (already inferred by Nielsen [9]) of \(s_{n,p} \) than formula (3), namely that \(s_{n,p} \) can be expressed as a homogeneous polynomial of "degree" \(n + p \) in the terms \(\zeta(m) \), \((2 \leq m \leq n + p) \), with rational
coefficients, is much more suitable for actual computation. Using a formula-manipulation system, the evaluation of (27) is in fact straightforward once the expressions (23) for a_k ($0 \leq k \leq n + p$) and b_k [$0 \leq k \leq \max(n - 1, p)$] in terms of $\xi(m)$ have been initially established. It follows from (5) that, at least, all terms involving $\xi(1) = \gamma$ will cancel in the final expression for (27). For example, the special cases $s_{n,1}$ and $s_{1,p}$ reduce to a single term:

$$s_{n,1} = (-1)^n \sum_{\nu=0}^{n-1} b_{n-\nu-1}[(\nu + 2)a_{\nu+2} + b_1a_{\nu+1}] = \xi(n + 1)$$

and

$$s_{1,p} = (-1)^p \sum_{\rho=0}^{p} (\rho + 1)b_{p-\rho}a_{\rho+1} = \xi(p + 1).$$

The results obtained with REDUCE have been checked by evaluating the definition integral (2) by numerical integration, replacing the limits 0 and 1 by $\varepsilon = 10^{-8}$ and $1 - \varepsilon$, respectively, and using Stieltjes' 32 decimal table [10] of $\xi(m)$, $m = 2(1)70$, which is reproduced in [9], for the evaluation of $s_{n,p}$.

We add here that the substitution $t = \sin^2 \theta$ in (2) leads to the integral [6].

$$s_{n,p} = -\frac{(-2)^{n+p}}{(n-1)!p!} \int_0^{\pi/2} \cot \theta \log^n \sin \theta \log^p \cos \theta d\theta.$$

A closed expression for a similar integral,

$$R_{n,p} = \int_0^\pi \log^n t \log^p \cos t dt \quad (n \geq 0, p \geq 0),$$

has been given in [5], with examples up to $n = p = 4$.

3. A Table of the Integral. We list the expressions for $s_{n,p}$, $n = 1(1)9$, $p = 1(1)n$. The values for the integral in (2) itself,

$$r_{n,p} = \int_1^{1-t^{-1}} \log^{n-1}(1-t) dt = (-1)^{n+p-1}(n-1)!p!s_{n,p},$$

would lead for higher n or p to rather large coefficients. The reference work [2, No. 4.2912] lists only the case $n = p = 1$, whereas Lewin [6] gives (31) for $n = 2, 3, 4$, and $p = 2$.

Using the well-known relation [2, No. 9.5421],

$$\xi(2\mu) = \frac{2^{2\mu-1}\pi^{2\mu} |B_{2\mu}|}{(2\mu)!},$$

where $B_{2\mu}$ are the Bernoulli numbers, the expressions for $r_{n,p}$ simplify to some extent. We also give these values for $n = 1(1)7$, $p = 1(1)n$.

$$s_{11} = \xi(2),$$
$$s_{21} = \xi(3),$$
$$s_{22} = -\frac{1}{2}\xi^2(2) + \frac{1}{3}\xi(4),$$
$$s_{31} = \xi(4),$$
$$s_{32} = -\xi(2)\xi(3) + 2\xi(5),$$
CLOSED EXPRESSIONS FOR \(\int_0^1 t^{-1} \log^{n-1} t \log^p (1 - t) \, dt \)

\[s_{33} = \frac{1}{6} \zeta(2) - \frac{1}{3} \zeta(2) \zeta(4) - \zeta(3) + \frac{10}{3} \zeta(6), \]
\[s_{41} = \zeta(5), \]
\[s_{42} = -\zeta(2) \zeta(4) - \frac{1}{2} \zeta^2(3) + \frac{5}{3} \zeta(6), \]
\[s_{43} = \frac{1}{3} \zeta^2(2) \zeta(3) - 2 \zeta(2) \zeta(5) - \frac{3}{5} \zeta(3) \zeta(4) + 5 \zeta(7), \]
\[s_{44} = -\frac{1}{24} \zeta^2(2) + \frac{1}{3} \zeta^2(2) \zeta(4) + \zeta(2) \zeta^2(3) - \frac{10}{3} \zeta(2) \zeta(6) - 4 \zeta(3) \zeta(5) \]
\[- \frac{1}{6} \zeta^2(4) + \frac{33}{4} \zeta(8), \]
\[r_{11} = -\frac{1}{6} \pi^2, \]
\[r_{21} = \zeta(3), \]
\[r_{22} = -\frac{1}{180} \pi^4, \]
\[r_{31} = -\frac{1}{45} \pi^4, \]
\[r_{32} = -\frac{2}{3} \pi^2 \zeta(3) + 8 \zeta(5), \]
\[r_{33} = -\frac{23}{1260} \pi^6 + 12 \zeta^2(3), \]
\[r_{41} = 6 \zeta(5), \]
\[r_{42} = -\frac{1}{105} \pi^6 + 6 \zeta^2(3), \]
\[r_{43} = -\frac{1}{2} \pi^4 \zeta(3) - 12 \pi^2 \zeta(5) + 180 \zeta(7), \]
\[r_{44} = -\frac{400}{17900} \pi^8 - 24 \pi^2 \zeta^2(3) + 576 \zeta(3) \zeta(5). \]

The remaining expressions for \(s_{n,p}, n = 5(1)9, p = 1(1)n, \) and \(r_{n,p}, n = 5(1)7, \)
\(p = 1(1)n, \) are given in the microfiche section at the end of this issue. Numerical
values of \(s_{n,p} \) with 21 digits are presented in Table 2.

Table 2

<table>
<thead>
<tr>
<th>(n)</th>
<th>(p)</th>
<th>(s_{n,p})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.64493 40668 48226 43647E+00</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.20205 69031 59594 28540E+00</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2.70580 80842 77845 47879E-01</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1.08232 32337 11138 19152E+00</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>9.65511 59989 44373 44656E-02</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1.74898 53169 01140 44259E-02</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1.03692 77551 43369 92633E+00</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4.05368 97271 51973 78290E-02</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4.12316 51524 32535 53202E-03</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6.02891 53283 31913 91876E-04</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1.01734 30619 84449 13971E+00</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1.83559 28317 49446 58780E-02</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1.10762 05206 81261 04542E-03</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>1.06090 22891 02175 20514E-04</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1.29078 86926 10006 80019E-05</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1.00834 92773 81922 82684E+00</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>8.65052 90995 61105 50088E-03</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>3.20419 48118 65540 68195E-04</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>2.08107 99998 53278 80665E-05</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>1.81177 17675 49256 62907E-06</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1.88257 25261 51750 84100E-07</td>
</tr>
</tbody>
</table>
Table 2 (continued)

<table>
<thead>
<tr>
<th>n</th>
<th>(p)</th>
<th>(s_{n,p})</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>1.00407 73561 97944 33938E+00</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>4.17024 20454 82641 20903E-03</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>9.70014 34407 46026 74085E-05</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>4.37446 80142 37467 26660E-06</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>2.79046 61391 18230 10386E-07</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>2.19761 45278 08360 14044E-08</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1.99035 60428 47009 48657E-09</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1.00200 83928 26082 21442E+00</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2.03771 21074 18497 21127E-03</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>3.02392 65882 11524 77408E-05</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>9.63193 58629 25147 64220E-07</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>4.58067 37635 27237 01146E-08</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>2.78108 36333 42565 39146E-09</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>1.98664 22337 79748 87998E-10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1.59526 66865 47416 62087E-11</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1.00099 45751 27818 08534E+00</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1.00397 69886 51568 46827E-03</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>9.61339 45728 45768 87138E-06</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>2.19069 55625 33962 98356E-07</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>7.86919 99763 14613 72568E-09</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>3.73432 32019 05082 31190E-10</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>2.13492 93645 52627 26763E-11</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>1.39313 33415 77287 65028E-12</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1.00261 68238 56214 27731E-13</td>
</tr>
</tbody>
</table>

European Organization for Nuclear Research
CERN
CH-1211 Geneva 23, Switzerland

10. T. J. Stieltjes, “Table des valeurs des sommes \(S_k = \sum_{n=1}^{\infty} n^{-k} \),” Acta Math., v. 10, 1887, pp. 299–302.