Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Computing in permutation and matrix groups. I. Normal closure, commutator subgroups, series


Authors: Gregory Butler and John J. Cannon
Journal: Math. Comp. 39 (1982), 663-670
MSC: Primary 20-04; Secondary 20F14, 20G40
MathSciNet review: 669658
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is the first in a series which discusses computation in permutation and matrix groups of very large order. The fundamental concepts are defined, and some algorithms which perform elementary operations are presented. Algorithms to compute normal closures, commutator subgroups, derived series, lower central series, and upper central series are presented.


References [Enhancements On Off] (What's this?)

  • [1] Gregory Butler, "The Schreier algorithm for matrix groups," SYMSAC' 76 (Proc. 1976 A. C. M. Sympos. on Symbolic and Algebraic Computation, Yorktown Heights, N. Y., 1976), R. D. Jenks (ed.), A. C. M., New York, 1976, pp. 167-170.
  • [2] Gregory Butler, Computational Approaches to Certain Problems in the Theory of Finite Groups, Ph. D. Thesis, University of Sydney, 1979.
  • [3] John J. Cannon, Computing local structure of large finite groups, Computers in algebra and number theory (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 161–176. SIAM-AMS Proc., Vol. IV. MR 0367027
  • [4] John J. Cannon, Software tools for group theory, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 495–502. MR 604627
  • [5] George Havas, J. S. Richardson, and Leon S. Sterling, The last of the Fibonacci groups, Proc. Roy. Soc. Edinburgh Sect. A 83 (1979), no. 3-4, 199–203. MR 549854, 10.1017/S0308210500011513
  • [6] Jeffrey S. Leon, On an algorithm for finding a base and a strong generating set for a group given by generating permutations, Math. Comp. 35 (1980), no. 151, 941–974. MR 572868, 10.1090/S0025-5718-1980-0572868-5
  • [7] Charles C. Sims, Computational methods in the study of permutation groups, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 169–183. MR 0257203
  • [8] Charles C. Sims, Determining the conjugacy classes of a permutation group, Computers in algebra and number theory (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 191–195. SIAM-AMS Proc., Vol. IV. MR 0338135
  • [9] Charles C. Sims, The existence and uniqueness of Lyons’ group, Finite groups ’72 (Proc. Gainesville Conf., Univ. Florida, Gainesville, Fla., 1972) North-Holland, Amsterdam, 1973, pp. 138–141. North-Holland Math. Studies, Vol. 7. MR 0354881
  • [10] Charles C. Sims, "Some algorithms based on coset enumeration," 1974. (Manuscript.)
  • [11] Charles C. Sims, Some group-theoretic algorithms, Topics in algebra (Proc. 18th Summer Res. Inst., Austral. Math. Soc., Austral. Nat. Univ., Canberra, 1978) Lecture Notes in Math., vol. 697, Springer, Berlin, 1978, pp. 108–124. MR 524367

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 20-04, 20F14, 20G40

Retrieve articles in all journals with MSC: 20-04, 20F14, 20G40


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1982-0669658-3
Keywords: Algorithm, permutation group, matrix group
Article copyright: © Copyright 1982 American Mathematical Society