Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computing in permutation and matrix groups. II. Backtrack algorithm


Author: Gregory Butler
Journal: Math. Comp. 39 (1982), 671-680
MSC: Primary 20-04; Secondary 20E25, 20G40
DOI: https://doi.org/10.1090/S0025-5718-1982-0669659-5
MathSciNet review: 669659
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This is the second paper in a series which discusses computation in permutation and matrix groups of very large order. The essential aspects of a backtrack algorithm which searches these groups are presented. We then uniformly describe algorithms for computing centralizers, intersections, and set stabilizers, as well as an algorithm which determines whether two elements are conjugate.


References [Enhancements On Off] (What's this?)

  • [1] Gregory Butler, Computational Approaches to Certain Problems in the Theory of Finite Groups, Ph. D. Thesis, University of Sydney, 1979.
  • [2] Gregory Butler, "Computing normalizers in permutation groups," J. Algorithms. (To appear.) MR 699212 (84j:20003)
  • [3] Gregory Butler & John J. Cannon, "Computing in permutation and matrix groups. I: Normal closure, commutator subgroup, series," Math. Comp., v. 39, 1982, pp. MR 669658 (83k:20004a)
  • [4] Gregory Butler & John J. Cannon, "Computing in permutation and matrix groups. III: Sylow subgroups." (Manuscript.)
  • [5] John J. Cannon, "Software tools for group theory," Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R. I., 1980, pp. 495-502. MR 604627 (82i:20003)
  • [6] John J. Cannon, Robyn Gallagher & Kim McAllister, "STACKHANDLER: A language extension for low level set processing," Programming and Implementation Manual, TR 5, Computer-Aided Mathematics Project, Department of Pure Mathematics, University of Sydney, 1974.
  • [7] Christoph M. Hoffman, "On the complexity of intersecting permutation groups and its relationship with graph isomorphism." (Manuscript.)
  • [8] James F. Hurley & Arunas Rudvalis, "Finite simple groups," Amer. Math. Monthly, v. 84, 1977, pp. 693-714. MR 0466269 (57:6149)
  • [9] Jeffrey S. Leon, "An algorithm for computing the automorphism group of a Hadamard matrix," J. Combin. Theory Ser. A, v. 27, 1979, pp. 289-306. MR 555799 (81f:05033)
  • [10] Jeffrey S. Leon, personal communication.
  • [11] Brendan D. McKay, "Computing automorphisms and canonical labelling of graphs," Lecture Notes in Math., vol. 686, Springer-Verlag, Berlin and New York, 1978, pp. 223-232. MR 526749 (81b:05003)
  • [12] Heinrich Robertz, Eine Methode zur Berechnung der Automorphismengruppe einer endliche Gruppe, Diplomarbeit, R. W. T. H. Aachen, 1976.
  • [13] Charles C. Sims, "Determining the conjugacy classes of a permutation group," Computers in Algebra and Number Theory (Proc. Sympos. on Appl. Math., New York, 1970), G. Birkhoff and M. Hall, Jr. (eds.), SIAM-AMS Proceedings, vol. 4, Amer. Math. Soc., Providence, R. I., 1971. MR 0338135 (49:2901)
  • [14] Charles C. Sims, "Computation with permutation groups," Proc. Second Sympos. on Symbolic and Algebraic Manipulation (Los Angeles, 1971), S. R. Petrick (ed.), A. C. M., New York, 1971.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 20-04, 20E25, 20G40

Retrieve articles in all journals with MSC: 20-04, 20E25, 20G40


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1982-0669659-5
Keywords: Backtrack algorithm, permutation group, matrix group
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society