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On the Number of Markoff Numbers

Below a Given Bound

By Don Zagier

Abstract. According to a famous theorem of Markoff, the indefinite quadratic forms with

exceptionally large minima (greater than f of the square root of the discriminant) are in 1 : 1

correspondence with the solutions of the Diophantine equation p2 + q2 + r1 = ~ipqr. By

relating Markoffs algorithm for finding solutions of this equation to a problem of count-

ing lattice points in triangles, it is shown that the number of solutions less than x

equals Clog2 3x + 0(log x log log2 x) with an explicitly computable constant C =

0.18071704711507.... Numerical data up to 101300 is presented which suggests that the true

error term is considerably smaller.

1. By a Markoff triple we mean a solution (p, q, r) of the Markoff equation

(1) p2 + q2 + r2 = 3pqr        (p, q, r E Z, 1 < p < q < r);

a Markoff number is a member of such a triple. These numbers, of which the first few

are

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985,...,

play a role in a famous theorem of Markoff [10] (see also Frobenius [6], Cassels [2]):

the GL2(Z)-equivalence classes of real indefinite binary quadratic forms Q of

discriminant 1 for which the invariant

p(Q)= min \Q{x,y)\
(i,j)ez2-{(0,0)}

is greater than ^ are in one-to-one correspondence with the Markoff triples, the

invariant p(Q) for the form corresponding to (p, q, r) being (9 — 4r'2)'x/2. Thus

the part of the Markoff spectrum (the set of all p(Q)) lying above y is described

exactly by the Markoff numbers. An equivalent theorem is that, under the action of

SL2(Z) on R U {oo} given by x -> (ax + b)/(cx + d), the SL2(Z)-equivalence

classes of real numbers x for which the approximation measure

p(x) = lim sup ( q ■ min I qx — p I

is > y are in 1 : 1 correspondence with the Markoff triples, the spectrum being the

same as above (e.g. p(x) = 5~'/2 for x equivalent to the golden ratio and p(x) < 8"1/2

for all other x). Thus the Markoff numbers are important both in the theory of

quadratic forms and in the theory of Diophantine approximation. They have also

arisen in connection with problems in several other branches of mathematics, e.g. the
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710 DON ZAGIER

word enumeration problem in the free semigroup on two generators [3] and the

calculation of signature invariants of certain 4-dimensional manifolds [9].

Two obvious questions that one can ask about the Markoff spectrum are whether

its terms all have multiplicity one (i.e. whether the equivalence class of Q or x with a

given invariant jti > j is unique) and how rapidly the terms tend to the limiting value

y, or equivalently (denoting by SDÎ the set of Markoff triples)

1. Can there exist distinct triples (p, q, r), (//, q', r') E Wl with r = r"!

2. What is the asymptotic behavior of the function

M(*)= #{(p,q,r) ETl\r^x)

as x -* oo?

The answer to 1. is almost certainly negative, but no correct proof of this

conjecture has ever been advanced. As to the second—which, if the uniqueness

conjecture is true, is equivalent to asking how many Markoff numbers lie below

x—one is led easily by numerical data to the conjecture that M(x) grows like a

constant times log2 x (see Figure 1 ; the data on M(x) for x < 1015 was obtained on a

0 12 3 It 5 6       •   7 8 9 10 11 12 13 Ik 15      i-

FlGURE 1

Graph of log Mn(Mn = nth Markoff number) against {n

for Mn< 1015 and least-squares linear fit

table computer in a few minutes using the tree algorithm described below). The

purpose of this article is to show that this is the case. More precisely, we will prove

the following result.
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Theorem. The number of Markoff triples (p, q, r) withp < q < r < x is given by

(2) M(x) = C(logx)2 + o(logx(loglogx)2)       (x -. oo),

where

(3) C = —,      2*      fiPl +wigL7{(r) ^0-18071704711507;
*    (f,,,r)e»       f{p)f{<l)f{n

here 2* means that the two Markoff triples (1,1,1) and (1,1,2) with p = q are to be

counted with multiplicity \, andf(x) is the function

3x + ]/9x2 — 4 3x I        2
(4) f{x) = log-r-= arccosh—        \x**l

The fact that C, log2 x < M(x) < C2log2 x for some positive constants C, and C2

was proved by Harvey Cohn [4], who gave the lower bound

liminf ̂ P- > ~ —¡—r m 0.17917.
log2*       772/(l)/(2)

The existence of limM(x)/log2 x was proved by C. Gurwood in an as yet unpub-

lished thesis [7]; however, his method of proof, which is quite different from ours,

did not lead to a formula for the value of this limit and also gave a less precise error

term than that in (2) (namely 0(log13/7x log log x)).

We will give the proof of the theorem in the next section, while Section 3 describes

numerical calculations of M(x) up to jc = 101300. These suggest strongly that the

asymptotic formula (2) can be replaced by

(5) M(x) = C(log3x)2+ o(logx)

(equivalently, if Mn denotes the «th Markoff number, counting multiplicities if the

unicity conjecture mentioned above is false, then Mn ~ jA^ where A = el/*c «

10.5101504), but do not seem to be conclusive enough to warrant a guess as to the

order of magnitude of the true error term in (5).

The work described in this paper was done during a visit to the Istituto di

Matemática in Pisa in 1979, with support from the Centro Nazionale di Ricerca and

the Sonderforschungsbereich Theoretische Mathematik of the University of Bonn. I

would like to thank the members of the Institute at Pisa, and in particular Professor

Carlo Viola, for their hospitality during this visit, and Dr. F. Romani of the I.E.I, of

the C.N.R., Pisa, for his help with the computer calculations. I would also like to

thank the referee for several suggestions, in particular that of formulating the

"Stokes' theorem" identity (24) to codify an argument used several times in the

proof.

2. Given a Markoff triple m = (p, q, r), three other triples can be found by fixing

two elements of the triple and taking the other root of the quadratic equation

satisfied by the third, i.e., by replacing (p, q, r) by (p, q, 3pq — r), (p, r, 3pr — q),

or (q, r,3qr — p). Repeating the process, we obtain at each stage two new triples

(two rather than three because one of three triples generated from m is the one from

which m itself was obtained). In this way an infinite " tree" of triples is generated

starting from the triple (1,1,1) (see Figure 2); we will call this tree the Markoff tree.
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Figure 2

Markoff triples (p, q, r) with max(p, q) -s 100000

Conversely, given a Markoff triple (p,q,r) with r> 1, one checks easily that

3pq - r < r; and from this it follows by induction that all Markoff triples occur,

and occur only once, on this tree (for a fuller discussion of this and other properties

of the Markoff tree, see [2]).

To prove the theorem we must analyze the asymptotic behavior of the Markoff

tree. From the Markoff equation (1) we find that 3r2 2* 3pqr or r > pq; Up is large

(which will happen for all but a small portion of the tree, contributing O(logx) to

M(x)), then this implies that r is much larger than q and hence (1) gives r2 < 3pqr <

r2 + o(r2) or r ~ 3pq. Multiplying both sides of this equation by 3 and taking

logarithms gives

log(3/-) + log(3<7) = log(3r) + o(l)       (p large).



MARKOFF NUMBERS BELOW A GIVEN BOUND 713

{p,q,r)

In other words, the map x -> log(3x) maps a Markoff triple onto an approximate

solution (a, b, c) of the equation

(6) a + b = c,

and to the same degree of approximation the branching process

(p,r,3pr- q)~(p,r,3pr)

(q,r,3qr-p) ~(q,r,3qr)

which defines the Markoff tree maps to the algorithm

— (a,c, a + c)

^(b,c,b + c)

for passing from one solution of (6) to two larger ones. But this algorithm has a

well-known effect: starting from the solution (a, b, c) = (0,1,1) of (6) we generate

by means of (7) all solutions of

(8) a + b = c,       O-íü-íKc,    (a,b) = 1

(Euclidean algorithm). Thus we obtain a "Euclid tree" © parallel to the Markoff tree

9Jf and a bijective correspondence ^: Wl -» g sending the root (1,1,1) of 9JÎ to the

root (0,1,1) of © and then at each branching mapping the smaller branch of the

Markoff tree to the smaller branch of the Euclid tree, as shown in Figure 3 (this

(7) (a,b,c)

\    I
(1,13,31.)

(1,5,13)

\        /

(5,29,|i33)

Tt

\   /
tl.t.5)

(1,3,M

@

13       29       3k        89        169        19k I433       610

«(/>)

Figure 3

The Markoff tree and the Euclid tree

pairing 9JJ «-» <S was also observed by Harvey Cohn [5]). The proof of the theorem

will be based on refinements of this correspondence. That this gives the right order

of magnitude Clog2 x for M(x) can be seen from the fact that the counting function

E(x)= #{(a,b,c) E@\c<x}

is given asymptotically by

(9) E(x) = 1 + \  l<p{c)
2vTr

(<p = Euler function) and, by the remarks above, the correspondence ^ is given

roughly by x — log(3x). A somewhat more careful argument leads to the following

statement, which is weaker than the theorem and will be used in its proof.
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Lemma 1. The ratio M(x)/log2 x is bounded and bounded away from zero. More

precisely, we have

(10) liminf--^^ ■»   2,«-.126,
M{x) ^ _3_

log2*  " 2v72l0g23

(11) lim sup Pf1- < -~-^-- « .235.
M{x)  <       6

log2*        vT2log25

Proof. The correspondence ^ clearly has the form

HP, 1, r) = («(/>), «(?), «(/■)) (Up > I),

where a is a map from the set of Markoff numbers onto the set of natural numbers,

the first few values of which are given in the table in Figure 3. (Actually, since the

conjecture on the unicity of Markoff numbers is not known, one should more

properly say that a is a function of Markoff triples and write ^(m) =

(afm^), «(m?), a(m)), where mp and mq denote the triples below m with largest

elements p and q, respectively; from now on this point will not be mentioned again

and it will be understood that by "Markoff number" we mean a Markoff number

marked by a given position of appearance as the largest element of a Markoff triple.)

The map a is surjective but not injective: each integer n > 2 has j<p(n) preimages.

We claim that

02) «(P),^

for all Markoff numbersp; indeed, this holds for/7 = 1 andp = 2 by inspection and

then follows inductively because of the inequality r < 3pq or log 3r < log 3p + log 3q

for Markoff triples (p, q, r). Clearly (10) follows from (9) and (12). The reverse

direction is similar: for a Markoff triple (p,q,r) other than (1,1,1) or (1,1,2) we

have

(r - \pq)(r - \pq) = q2(p2 - l) + \p2(q2 - 4) > 0,

and hence (since r — \pq > \pq > 0) r > \pq. From this we obtain by induction the

estimate

a(p)
log5/V2

i log 5

which in conjunction with (9) implies Eq. (11).

To go further, we make two modifications:

A. Replace the function x -* log 3x by the function /defined in (4).

B. Break up the Markoff tree into a union of subtrees and apply the same

comparison method to each one.

A. The function (4) arises for the following reason. Any Markoff number p occurs

in an infinite chain (which Cassels [2], punning on a more famous discovery of the

same mathematician, calls a Markoff chain) of triples (p, q¡_x, q¡) (i E Z) with

Qi+i = 3Pit- 9,/-i-

(This is not quite correct since in (1) we adopted the convention of always writing

the elements of a Markoff triple in ascending order; thus if (q0, qx, p) is the first
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Markoff triple containing p the chain actually has the form

■ ■-,{p,q-\,<i-2),{cio,p,<i-\),{<io,q\,p),{%,p,<i2)Ap,<¡2,<ii),---

rather than {(/?, </,_,, <7,)},6Z.) This is a Fibonacci-type recursion—indeed, if p = I,

then the q¡ are Fibonacci numbers—and by a standard argument the numbers qt

grow like the | /' | th power of the larger eigenvalue of the matrix (3f ~0'), i.e.,

to i2jf =/(,).
l'ï - °o       I ' I

As a result, the function / provides a much closer correspondence between the

equations (1) and (6) than does the function x -» log 3x : the latter function trans-

forms (6) into the equation r2 = 3pqr, which is a rather poor approximation to the

Markoff equation, but the equation f(p)+f(q)—f(r) obtained by applying the

function/to (6) can be rewritten as

(13) p2 +q2 +r2 = 3pqr+ f

(to see this, write ep = (3p + ]¡9p2 — 4 )/2 and similarly for q and r; then 3p = ep

+ e~x, 3q = eq + e~', 3r = epeq + e~'e~' and (13) follows), which is very close to (1).

The error made in approximating (1) by (13) is bounded explicitly by the following

lemma.

Lemma 2. Let (p,q, r) be a Markoff triple. Then

(14) f{r)<f{p)+f{q)<f{r)
c

~~2 '

r

where c is an absolute constant.

Proof. Let r, = f'x(f(p) + f(q))\ this makes sense because/is monotone. Then

(p, q, rx) satisfies the equation (13), and, subtracting this from (1), we find

= rx2-3pqrx - r2 + 3pqr = (r, - r)(rx +r- 3pq) > |r(r, - r),

where in the last step we have used rx> r and the inequality r > \pq obtained

earlier. Thus

r < /-! < r + — ,

and applying/to these equations gives (14). We do not care much about the exact

value of c, but remark that one can choose c = .97 or, if one excludes the two

Markoff triples (1,1,1) and (1,1,2), c — .54, and this is more or less optimal since

the inequality (14) is false with c = .52 for all Markoff triples with/) = 1.

B. Let Wl' be a finite connected subset of Wl which contains the "trunk" ((1,1,1),

(1,1,2)}, and let © be the set of triples m £ 9JÍ\9Dc' such that 9JT U {m} is

connected. It is clear by induction that | @ | = | W \ —I and that ÏÏR can be written as

a disjoint union

(15) 9Jc = 9Jc'U   U 9Km,
me©

where 9Jtm is the infinite tree with root m, i.e. the set of all triples in 5D? lying above

the triple m. Hence, for sufficiently large x (larger than r for all (p, q, r) E Tt'), we

have with the obvious notation

(16) M(x)=\W\+   2   Mw(x)=l+    2   (Mm(*) + 1).
me© me©
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We will make the special choice

W = {(p,q, r) Em\r<y),        @ = {(p, q, r) E m | q <y < r),

where y is large but much smaller than x (Figure 2 illustrates W U @ for this choice

of a«' with>> = 105); then (16) becomes

(17)    M(x) = M(y)+        2       M(p,qJx)=l +        2       (M(pqr)(x) + l).
(p.q.OŒTl (p,q,r)eW

<¡f«v<r q<y<r

Fot y large, the term M(y) in (17) can be estimated by Lemma 1. To study the terms

in the sum, we use Lemma 2. For a, ß positive real numbers we denote by © a „ the

tree

\        /   \ / /    \ /
(a,2a + /3,3a + ß)    (a + /3,2a + /3,3a + 2/3)    (ß, a + 2ß, a + iß)    (a + /3, a + 2/3,2a + 3/3)

(a,a + /3,2a +/3) (j8, a + 0, a + 2/8)

(a,/3,a + /3)

of solutions of (6) generated from (a, ß, a + ß) using the algorithm (7) and by

Ea,ß(x) = #{(a,b,c)E<§a,ß\c<x}

the counting function of ©aj8. Then Lemma 2 implies that, for a Markoff triple

(p, q, r) with r large, the function / maps the tree 3TÎ(/7 } approximately onto the

tree ©/(/>),/(<rt, so M(/,i<?if)(*) « Ef(p)Jiq)(f(x)). More precisely, we have:

Lemma 3. LeV m = (p, q, r) be a Markoff triple, and set a = f(p), ß = f(q),

a' = f(p) — c/r2, ß' = f(q) — c/r2 with c as in Lemma 2. Then for all x

(18) Ea/3(f(x))<Mjx)<Ea,ß,(f(x)).

Proof. As in the comparison between 9JÏ and ©, we see that the map ^m:

9Jcrn -» ©aj8, obtained by superposing one tree on the other in an order-preserving

way, has the form Vm(px, qt, rx) = (am(px), am(qx), am(rx)), where am is the func-

tion from Markoff numbers occurring in Ttm to the set of positive integral linear

combinations of a and ß defined by am(p) = a, am(q) = ß and am(rx) = am(px) +

«m(?i) for (Pi> <7i> r\) G ^m- Since f{r\) <f{P\) +/(<7i) (Lemma 2), we see by

induction that am(n) > f(n) for all n and hence that each triple (a, b, c) E ©a ß with

c ^f(x) corresponds under tym to a triple (px, qx, rx) E Wlm with rx < x. This gives

the first inequality in (18). For the second, we define maps ^ and a'm in the same

way as ^rm and am but with a, ß replaced by a', ß'. Then we claim that a'm(n) *zf(n)

— c/r2 for all n. Indeed, this is true (with equality) for n = p and n = q, and if the

assertion has been proved for the first two elements of a triple (px, qx, rx) Eïïlm,

then Lemma 2 implies

2c
<{r\) = a'miPi) + a'm(9i) ^f{P\) +/(<7i)-7

;/(',) +
2c

.2 ;/(',)
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whence the claim follows by induction. We deduce that

Mm(x)<Ea.<ß,(f(x)-c/r2);

the inequality in the lemma is a slight weakening of this.

To use this result we need an asymptotic formula for the function Ea ß(x). Since

the numbers a, ß will vary, it must be uniform in a, ß and x. Such an estimate is

provided by the following lemma.

Lemma 4. Let x, a, ß be positive real numbers, ß > a. Then

(19) L.^>=^a+°(ï)+0(5l08l)'

where the constants implied by the 0( ) are absolute and effectively computable.

Proof. The triples occurring in the tree © aß are seen by induction to have the form

(m"a + n"ß, m'a + n'ß, ma + nß), where m, n are coprime positive integers and

m", n", m', n' are the integers determined uniquely from m and n by the conditions

0 < m" < m',   0 < n" < n',    m" + m' = m,   n" + n' = n,   m'n — mn' = ±1.

Conversely, every pair of relatively prime positive integers m and n gives rise to an

element of ©a/8 in this way (if we map ©aj8 to ©\{(0,1,1), (1,1,2)} = ©12 in the

obvious way, then the element of ©a/J in question is sent to the triple (m, m + n,

2m + n) E ©). Hence

(20) Ea/3(.x) = #{(m,n) E Z2| m, n > 0, (m, n) = I, ma + nß *z x).

Define

(21) Na/j(x) = #{(m,n) E N2| ma + nß < x}.

Then

lx/ß)

"a,ß{x)=   2  Eai/,(|)=    2   E^d),
d— 1

so by the Möbius inversion formula

£„,,(*) =   1 /i(rf)Na>/,(f ) - Yp{d)Na.ß(^)-

On the other hand,

nß)_^(x-nß   ,  0(1)j

d=\

[*/ß]

d=\

[x/ß]

«=i l

= T/
n=\

+

2a
+ °(j)

2 aß ^ "(!)-(!)■
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and hence

[x/ß]

■"ftSil_jLfii£í + o(i) + oliTi.\
2«í ..,

,2

2«/8 \ ^

6   ^//3+ *(£))-¿*MÍMí*í)-
This proves the lemma.

We are now ready to estimate the various terms in (17). Lemmas 2, 3, and 4 give a

uniform and effective estimate

M     , ,   j__Zk£_
"*'*'    -2 (/(/>)+ o(ia2))(/(^) + o(ia2))

We replace log(/(*)//( g )) in the last term by log /(x) since, with our final choice of

y, it will be of this order of magnitude anyway. We can absorb the various " +1" in

(17) into the error term 0(f(x)/f(p)) since p will always be smaller than x.

Equation (17) then gives

M(x) = Cyf(x)2 + 0(Dyf(x)2 + Eyf(x) + F,/(*) log/(*)),

where

Cy=1f{p)fM'   Dy=1r2f(pff(q)'   ^=27(7)'   Fy=2fU)'

the sum in each case being over all Markoff triples (p,q, r) with q ^y < r. We

claim that

(22)    C^C+0^,   D, = oU,   Ev = 0(logy),   Fy = 0(logy),

where C is the constant defined in (3). From this it will follow that

M(x) = Cf(x)2 + Ol^-+f(x)logy logf(x)

and hence withy = (log Jc)1/2/loglog x the assertion of the theorem.

We start with C . For SDÎ', @ as in (15) we have the identity

(,* y 1 _        y*       fÍP)+f(q)-f(r)

[    ) „.¿e© f(p)f(9)       (P,t)^       f{p)f{l)f{r)      '

where 2* has the same meaning as in (3). This is a special case of the identity

(24) 2       g{p,q)=       2*      {g{p,r)+g{q,r)-g(p,q))
(p,q,r)£& (p,q,r)<EW
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(where g is an arbitrary function), which can be proved easily by induction on A/',

starting with M' = {(1,1,1), (1,1,2)} and adding one vertex at a time. (The case

g = 1 of (24) is the formula | @ | = | SDÎ ' | — 1 used earlier.) Equation (23) and Lemma

2 give

c=      y*       f{p)+f{q)-f{r) _cl y I_1_\
'      (,.¿>e«       /{P)f {«M') (p,q%m    \r2f{p)f{q)f{r)J-

r*iy r>y

Since /(/?) is bounded from below and/(g) and f(r) are greater than a constant

times log/- (because r < 3pq < 3q2), the last term is 0(2r l//-2log2 r), where the

sum extends over all Markoff numbers r (counting multiplicity if the uniqueness

conjecture is false) greater than y. But this can be estimated using Lemma 1 and

partial summation:

y 1 y     M(r)-M(r-l)

M„>y M2log2Mn      r=y+x r2log2r

_ _-M(y) +   2 M(r)(
r>v '(y+ iyiog2(y+ 1)       r>y \r2log2r       (r + l)¿log2(r + I)

y log2 y I      r>v    Xr'log^j \ y¿

This proves the first of the estimates (21). For the others, we observe that r > y and

hence Dv < y~2Cy = 0(y'2), while Ff< EY, so that we need only prove the estimate

Ey = 0(log y). For this we apply the identity (24) with g(p, q) = l/f(p) to obtain

E _      ^* !

(p,q,r)EW   f{q)
r*íy

Since r < 3q2 for a Markoff triple, we have l/f(q) = 0(1/log r) and hence—again

using Lemma 1 and Abel summation—

Ev«   2
Mn*y   l08M«

= s M^);M^-1) = MM + 2 u{p)^
logp logy      pZx \logp      log(/7+l)

p=\    \plogzpi p=\

This completes the proof of the theorem.

3. In this section we discuss the error term in the asymptotic formula (2) from

both a theoretical and an experimental point of view.

It is clear from the proof of the theorem that the main source of this error term is

the rather crude estimate of Ea ß(x) given in Lemma 4. For instance, eliminating the

log*//? in (19) would replace the error term in (2) by O(logxloglogx), and

replacing the error term in (19) by (x/a)x~c for some e > 0 would permit one to



720 DON ZAGIER

reduce the error term in (2) to 0((log Jc)1_e(loglog jc)1+e). One can therefore ask

whether a better result than that given in Lemma 4 can be obtained by using more

sophisticated methods.

The function Ea ß(x) is given by Eq. (20) as the number of visible lattice points in

the triangle m, n < 0, am + ßn < x, where by "visible" we mean a point which is

the nearest point to the origin on a straight line. It is related to the total number

N„i/S(jt) of lattice points in this triangle by a Möbius inversion formula. Now the

trivial estimate x2/2aß — x/2a + 0(x/ß) which we gave for tiaß(x) can be

improved considerably. The function Uaß was studied in two famous memoirs of

Hardy and Littlewood [8], in which they prove in particular:

x2
-ß irrational =» Na ß(x) = Jaß ~ 2a~ ~ 2ß + °^'

'(f) "*-n.^)= ¿ - É - Tß + <**'>     iVc> ' - i)¡

here f(X), the approximation type of a real number X, is defined by

t(\)>h   if
const , _

> —— for all/», q EZ,q>0.

They show that these estimates are essentially best possible. Now in our application

the number a/ß = f(p)/f(q) is always irrational (since otherwise the numbers ep

and e defined after Eq. (13) would be units of norm 1 in the same real quadratic

field, and hence the number 3rx = e e + epxe~x would be an integer, contradicting

the estimate r < rx < r + 5/9r given in the proof of Lemma 2), and then the results

of Baker [1, p. 22] show that it in fact has finite type. Thus one might hope that the

error term in (19) could be improved considerably by combining the deep results of

Hardy-Littlewood and of Baker. Unfortunately, this fails for several reasons:

(i) The results of Hardy and Littlewood are neither effective nor uniform with

respect to a and ß.

(ii) In passing from Na ß to Eaß by the Möbius formula, an error term 0(xc) with

c < 1 gives rise to an error

2 *{d)o[{-d )C) = o(x< 2 a") = o(x<^-c) = O(x)

essentially independent of c, so that the huge improvement of O(x) to 0(xc) for

Na ß leads only to the modest improvement of 0(x log x) to O(x) for E0 ß.

(iii) Even if these problems could be resolved and we had an effective error

estimate 0(xx~X//,(a/ß)) for Eaß(x), we could not improve our final result, because

the value of t(f(p)/f(q)) following from the theorem of Baker quoted, namely

0(log p log q log log q) with an absolute and effective 0( )-constant, is much too big

for our purposes: in our application p and q run up to y **> log x, so Baker's result

gives t = 0((loglogx)2logloglogx), which is much larger than log f(x), so that

f(x)x ~x/l is of the same order of magnitude as/(jc).

Thus it does not seem possible to get a serious improvement of (19) in this way.

However, a small improvement (say, getting rid of the logarithm) may well be
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possible; indeed, even in the case a = ß, which leads to the worst error term (namely

> const • x) for the Hardy-Littlewood function Naß(x), the error term in (19) can

be improved at least from O(xlogx) to 0(xlog2/3xloglog4/3x), as was shown by

Walfisz [11] (note that Eu(jc) is essentially the summatory function of the Euler

<p-function), and one can hope that for a/ß irrational or of finite approximation

type this can be improved still further. In any case, the problem of finding good

estimates for Ea ß(x) seems to be non trivial and of some interest quite apart from

the application to Markoff numbers. More generally, I would propose to analytic

number theorists the problem of extending the classical results on lattice points in

convex regions to the problem of counting visible lattice points in such regions.*

So much for the theoretical possibilities of finding the best error term in the

asymptotic formula for M(x). From the practical point of view, one can simply try

to calculate M(x) for some extremely large x and thus determine empirically whether

the error term given in (2) is in the right ball park. The number M(x) can be

calculated numerically by the same method as was used for the proof of the theorem,

i.e., a combination of Eqs. (17) and (18) for a suitable choice of y. In the proof of the

theorem we took a fairly small value of y (roughly ^log x ) in order to balance the

relatively large error in our formula for Ea ß(f(x)). In a numerical calculation we

will compute Ea ß(x) exactly and hence should choose a much larger y—ideally, so

large that the estimate (18) gives an exact value for M m(x). This is what was done in

the actual computation: Eq. (17) was used withy = 100000 (i.e., with UÏÏÎ' U @ as in

Figure 2) and x ran up to 10'300, still sufficiently small that the upper and lower

bounds in (18) always agreed (not surprising since/( 10130°) is only about 3000, while

a', ß' and a, ß differ by at most 10"'°). The computer calculated the difference

e(x) =\M(x) - C(log3x)2|

for each power of 10 up to 10'300 and printed this error every time it exceeded the

largest previous error. The results are shown in Table 1.

Table 1

N    £(10")     N    £(10")      N      £(10")      N      e(10")       N       e(10")

1 0.9 7 2.4 93 6.8 373 13.8 567 25.3

2 1.1 12 2.8 109 8.4 404 15.0 832 26.0

3 1.4 22 3.1 111 10.0 429 16.8 952 27.9

4 1.8 38 3.5 112 10.4 498 18.0 1015 37.8

5 2.3 44 6.6 255 13.3 534 23.1 1116 38.6

As can be seen, the agreement between M(x) and Clog23x is extremely good, the

worst case found being

M(10"16) = 1, 194, 385,       C(log3 • 101"6)2 = 1, 194, 346.4

with an error of 38.6. This is so much smaller than the number logx(loglogx)2 in

our theorem, which for x = 101116 is about 1.2 X 106, that one's first thought is that

the error term in (2) is of completely the wrong order of magnitude and that the

correct exponent of logx must be less than 1, perhaps { (since 38.6 is about the

*See note added in proof.
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square-root of log(10"16)). That this conclusion is not warranted by the numerical

evidence is demonstrated in Figure 4, where the information of Table 1 is shown

graphically in comparison with the three functions

(25) — (logx)'/2loglogx,    ( — log*       , °g*      .
10 \ 10 / (log log x)2

As can be seen, the growth of log x and log log x is so slow that even for the huge

values of x we are considering the three functions (25) have exactly the same order of

magnitude (the function yjlog x /log log x changes by less than 5% in the range

1030 < x « 101300 !). Thus the empirical evidence does not support the conclusion

that the exponent of log x in (2) can be reduced, and after analyzing the errors in the

proof of the theorem heuristically I would guess that the true error term in (2)

probably is in fact (logx)1+0(1), so that our result is in a crude sense best possible.

|0200     ,04OO       10600      10800      ,„1000      101200

Figure 4

Comparison ofe(x) with some functions of slow growth

Note Added in Proof. The problem of counting lattice points with coprime

coordinates has been looked at, at my suggestion, by B. Z. Moroz (to appear).

Assuming the Riemann hypothesis, he shows that an estimate of the form N(x) =

Xx2 + px + 0(xy) with y < 1 for the number of lattice points in xA (A a region in

R2) implies an estimate of the form E(x) = f(2)"'Xx2 + 0(xy ) with y' < 1 (in fact,

with any y' > (4 — y)/(5 — 2y)) for the corresponding problem for visible points.

Thus the difficulty mentioned in (ii) above can be circumvented if one assumes the

Riemann hypothesis. However, this leads to no apparent improvement in the result

on Markoff numbers, since the problems mentioned in (i) and (iii) remain.
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