CORRIGENDUM

For 215789, read 2157989.

This trivial error has the following real interest. The integer

\[N = N_1(83, 3) = \frac{10^{84} + 17}{9} \]

has 84 decimal digits: 83 ones followed by a three. There was little doubt here that \(N \) is prime. But Williams and D. H. Lehmer found that

\[
\begin{align*}
N - 1 &= 2^3 \cdot 1531 \cdot H_1, \\
N + 1 &= 2 \cdot 3 \cdot H_2, \\
N^2 + 1 &= 2 \cdot 5 \cdot 2069 \cdot 2157989 \cdot H_4, \\
N^2 + N + 1 &= 7 \cdot 14869 \cdot H_3, \\
N^2 - N + 1 &= 3 \cdot 271 \cdot H_6,
\end{align*}
\]

and that the five composite \(H_i \) have no prime divisor < 5,988,337,680. This (unusual) paucity of moderate prime factors meant that Williams was unable to prove \(N \) prime even with the powerful method of Williams and Holte.

But recently Lenstra and Cohen easily proved \(N \) prime with their efficient modification of Adleman’s method. Their method, with complete details, will be published in this journal.

D. S.