Sharp error estimates for a finite element-penalty approach to a class of regulator problems

Authors:
Goong Chen, Wendell H. Mills, Shun Hua Sun and David A. Yost

Journal:
Math. Comp. **40** (1983), 151-173

MSC:
Primary 65K10; Secondary 49D30

DOI:
https://doi.org/10.1090/S0025-5718-1983-0679438-1

MathSciNet review:
679438

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Quadratic cost optimal controls can be solved by penalizing the governing linear differential equation [2], [9]. In this paper, we study the numerical analysis of this approach using finite elements. We formulate the geometric *condition* (H) which requires that pairs of certain related finite-dimensional approximation spaces form "angles" which are bounded away from the "180 angle". Under condition (H), we prove that the penalty parameter and the discretization parameter *h* are independent in the error bounds, thereby giving sharp asymptotic error estimates. This condition (H) is shown to be also a necessary condition for such independence. Examples and numerical evidence are also provided.

**[1]**I. Babuska & A. K. Aziz,*The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations*(A. K. Aziz, ed.), Academic Press, New York, 1972. MR**0347104 (49:11824)****[2]**A. V. Balakrishnan, "On a new computing technique in optimal control,"*SIAM J. Control.*, v. 6, 1968, pp. 149-173. MR**0250154 (40:3394)****[3]**W. E. Bosarge & O. G. Johnson, "Error bounds of high order accuracy for the state regulator problem via piecewise polynomial approximation,"*SIAM J. Control*, v. 9, 1971, pp. 15-28. MR**0289179 (44:6374)****[4]**G. Chen & W. H. Mills, "Finite elements and terminal penalization for quadratic cost optimal control problems governed by ordinary differential equations,"*SIAM J. Control Optim.*, v. 19, 1981, pp. 744-764. MR**634952 (83a:49044)****[5]**F. Deutsch, "The alternating method of von-Neumann," in*Multivariate Approximation Theory*(W. Schempp and K. Zeller, eds.), Birkhäuser Verlag, Basel, 1979.**[6]**R. S. Falk, "A finite element method for the stationary Stokes equations using trial functions which do not have to satisfy ,"*Math. Comp.*, v. 30, 1976, pp. 698-702. MR**0421109 (54:9114)****[7]**R. S. Falk & J. T. King, "A penalty and extrapolation method for the stationary Stokes equation,"*SIAM J. Numer. Anal.*, v. 13, 1976, pp. 814-829. MR**0471382 (57:11116)****[8]**I. C. Gohberg & M. G. Krein,*Introduction to the Theory of Linear Nonselfadjoint Operators*, Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, R. I., 1969. MR**0246142 (39:7447)****[9]**J. L. Lions,*Optimal Control of Systems Governed by Partial Differential Equations*, Springer-Verlag, Berlin and New York, 1971. MR**0271512 (42:6395)****[10]**B. T. Polyak, "The convergence rate of the penalty function method,"*Zh. Vychisl. Mat. i Mat. Fiz.*, v. 11, 1971, pp. 3-11. (Russian)**[11]**D. L. Russell,*Mathematics of Finite Dimensional Control Systems, Theory and Design*, Marcel Dekker, New York, 1979. MR**531035 (80d:93007)****[12]**G. Strang & G. Fix,*An Analysis of the Finite Element Method*, Prentice-Hall, Englewood Cliffs, N. J., 1973. MR**0443377 (56:1747)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65K10,
49D30

Retrieve articles in all journals with MSC: 65K10, 49D30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1983-0679438-1

Article copyright:
© Copyright 1983
American Mathematical Society