Block Runge-Kutta methods for the numerical integration of initial value problems in ordinary differential equations. I. The nonstiff case

Author:
J. R. Cash

Journal:
Math. Comp. **40** (1983), 175-191

MSC:
Primary 65L05

DOI:
https://doi.org/10.1090/S0025-5718-1983-0679439-3

MathSciNet review:
679439

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Block Runge-Kutta formulae suitable for the approximate numerical integration of initial value problems for first order systems of ordinary differential equations are derived. Considered in detail are the problems of varying both order and stepsize automatically. This leads to a class of variable order block explicit Runge-Kutta formulae for the integration of nonstiff problems and a class of variable order block implicit formulae suitable for stiff problems. The central idea is similar to one due to C. W. Gear in developing Runge-Kutta starters for linear multistep methods. Some numerical results are given to illustrate the algorithms developed for both the stiff and nonstiff cases and comparisons with standard Runge-Kutta methods are made.

**[1]**J. Bond,*Some Block Iterative Methods for the Numerical Solution of Systems of Ordinary Differential Equations*, Ph. D. thesis, Univ. of London, 1979.**[2]**D. G. Brush, J. J. Kohfeld & G. T. Thompson, "Solution of ordinary differential equations using two 'off-step' points,"*J. Assoc. Comput. Mach.*, v. 14, 1967, pp. 769-784.**[3]**J. C. Butcher,*Implicit Runge-Kutta processes*, Math. Comp.**18**(1964), 50–64. MR**0159424**, https://doi.org/10.1090/S0025-5718-1964-0159424-9**[4]**J. C. Butcher,*Coefficients for the study of Runge-Kutta integration processes*, J. Austral. Math. Soc.**3**(1963), 185–201. MR**0152129****[5]**J. R. Cash and C. B. Liem,*On the design of a variable order, variable step diagonally implicit Runge-Kutta algorithm*, J. Inst. Math. Appl.**26**(1980), no. 1, 87–91. MR**594345****[6]**John Donelson III. and Eldon Hansen,*Cyclic composite multistep predictor-corrector methods*, SIAM J. Numer. Anal.**8**(1971), 137–157. MR**0282531**, https://doi.org/10.1137/0708018**[7]**E. Fehlberg,*Classical Fifth, Sixth, Seventh and Eighth Order Runge-Kutta Formulas With Stepsize Control*, NASA technical report no. 287, 1968.**[8]**E. Fehlberg,*Low Order Classical Runge-Kutta Formulas With Stepsize Control and Their Application to Some Heat Transfer Problems*, NASA technical report no. 315, 1969.**[9]**L. Fox,*The numerical solution of two-point boundary problems in ordinary differential equations*, Oxford University Press, New York, 1957. MR**0102178****[10]**C. William Gear,*Numerical initial value problems in ordinary differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR**0315898****[11]**C. W. Gear,*Runge-Kutta starters for multistep methods*, ACM Trans. Math. Software**6**(1980), no. 3, 263–279. MR**585338**, https://doi.org/10.1145/355900.355901**[12]**William B. Gragg and Hans J. Stetter,*Generalized multistep predictor-corrector methods*, J. Assoc. Comput. Mach.**11**(1964), 188–209. MR**0161476**, https://doi.org/10.1145/321217.321223**[13]**A. C. Hindmarsh,*GEAR: Ordinary Differential Equation System Solver*, UCID-30001, Rev. 3, Lawrence Livermore Laboratory, Univ. of California, 1974.**[14]**T. E. Hull, W. H. Enright, B. M. Fellen, and A. E. Sedgwick,*Comparing numerical methods for ordinary differential equations*, SIAM J. Numer. Anal.**9**(1972), 603–637; errata, ibid. 11 (1974), 681. MR**0351086**, https://doi.org/10.1137/0709052**[15]**W. H. Enright and T. E. Hull,*Test results on initial value methods for non-stiff ordinary differential equations*, SIAM J. Numer. Anal.**13**(1976), no. 6, 944–961. MR**0428714**, https://doi.org/10.1137/0713075**[16]**J. J. Kohfeld and G. T. Thompson,*Multistep methods with modified predictors and correctors*, J. Assoc. Comput. Mach.**14**(1967), 155–166. MR**0242375**, https://doi.org/10.1145/321371.321383**[17]**Arieh Iserles,*On the 𝐴-stability of implicit Runge-Kutta processes*, BIT**18**(1978), no. 2, 157–169. MR**0501927**, https://doi.org/10.1007/BF01931692**[18]**W. Riha,*Optimal stability polynomials*, Computing (Arch. Elektron. Rechnen)**9**(1972), 37–43 (English, with German summary). MR**0315901****[19]**J. Barkley Rosser,*A Runge-Kutta for all seasons*, SIAM Rev.**9**(1967), 417–452. MR**0219242**, https://doi.org/10.1137/1009069**[20]**D. Sarafyan,*Composite and Multi-Step Runge-Kutta Formulas*, Technical Report No. 18, Louisiana State University, Nov. 1966.**[21]**D. Sarafyan,*Multi-Order Property of Runge-Kutta Formulas and Error Estimation*, Technical Report No. 29, Louisiana State University, Nov. 1967.**[22]**L. F. Shampine and H. A. Watts,*Global error estimation for ordinary differential equations*, ACM Trans. Math. Software**2**(1976), no. 2, 172–186. MR**0413507**, https://doi.org/10.1145/355681.355687**[23]**L. F. Shampine, M. K. Gordon, and J. A. Wisniewski,*Variable order Runge-Kutta codes*, Academic Press, London-New York-Toronto, Ont., 1980, pp. 83–101. MR**582973****[24]**L. F. Shampine and M. K. Gordon,*Computer solution of ordinary differential equations*, W. H. Freeman and Co., San Francisco, Calif., 1975. The initial value problem. MR**0478627****[25]**Hans J. Stetter,*Analysis of discretization methods for ordinary differential equations*, Springer-Verlag, New York-Heidelberg, 1973. Springer Tracts in Natural Philosophy, Vol. 23. MR**0426438****[26]**P. J. van der Houwen,*Construction of Integration Formulas for Initial Value Problems*, North-Holland, Amsterdam, 1976.**[27]**H. A. Watts,*Runge-Kutta-Fehlberg Methods: Sealed Stability Regions*, report number SAND760323, 1976.**[28]**Jack Williams and Frank de Hoog,*A class of 𝐴-stable advanced multistep methods*, Math. Comp.**28**(1974), 163–177. MR**0356519**, https://doi.org/10.1090/S0025-5718-1974-0356519-8

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05

Retrieve articles in all journals with MSC: 65L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1983-0679439-3

Article copyright:
© Copyright 1983
American Mathematical Society