Block Runge-Kutta methods for the numerical integration of initial value problems in ordinary differential equations. II. The stiff case

Author:
J. R. Cash

Journal:
Math. Comp. **40** (1983), 193-206

MSC:
Primary 65L05

DOI:
https://doi.org/10.1090/S0025-5718-1983-0679440-X

MathSciNet review:
679440

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The approach described in the first part of this paper is extended to include diagonally implicit Runge-Kutta (DIRK) formulae. The algorithms developed are suitable for the numerical integration of stiff differential systems, and their efficiency is illustrated by means of some numerical examples.

**[1]**Roger Alexander,*Diagonally implicit Runge-Kutta methods for stiff o.d.e.’s*, SIAM J. Numer. Anal.**14**(1977), no. 6, 1006–1021. MR**0458890**, https://doi.org/10.1137/0714068**[2]**J. E. Bond and J. R. Cash,*A block method for the numerical integration of stiff systems of ordinary differential equations*, BIT**19**(1979), no. 4, 429–447. MR**559952**, https://doi.org/10.1007/BF01931259**[3]**J. C. Butcher,*Coefficients for the study of Runge-Kutta integration processes*, J. Austral. Math. Soc.**3**(1963), 185–201. MR**0152129****[4]**J. C. Butcher, K. Burrage & F. H. Chipman,*STRIDE*:*Stable Runge-Kutta Integrator for Differential Equations*, Report No. 20, Dept. of Mathematics, University of Auckland, New Zealand, 1979.**[5]**J. R. Cash, "Diagonally implicit Runge-Kutta formulae with error estimates,"*J. Inst. Math. Appl.*, v. 24, 1979, pp. 293-301.**[6]**J. R. Cash,*Stable recursions*, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York-Toronto, Ont., 1979. With applications to the numerical solution of stiff systems; Computational Mathematics and Applications. MR**570113****[7]**M. Crouzieux,*Sur l'Approximation des équations Différentielles Opérationnelles Linéaires par des Méthodes de Runge-Kutta*, Ph.D. thesis, University of Paris, 1975.**[8]**C. W. Gear,*Runge-Kutta starters for multistep methods*, ACM Trans. Math. Software**6**(1980), no. 3, 263–279. MR**585338**, https://doi.org/10.1145/355900.355901**[9]**A. C. Hindmarsh,*GEAR*:*Ordinary Differential Equation System Solver*, Rep. UCID-30001, Rev. 3, Lawrence Livermore Laboratory, Livermore, Calif., 1974.**[10]**K. R. Jackson and R. Sacks-Davis,*An alternative implementation of variable step-size multistep formulas for stiff ODEs*, ACM Trans. Math. Software**6**(1980), no. 3, 295–318. MR**585340**, https://doi.org/10.1145/355900.355903**[11]**J. D. Lambert. Private communication, 1980.**[12]**Bengt Lindberg,*Characterization of optimal stepsize sequences for methods for stiff differential equations*, SIAM J. Numer. Anal.**14**(1977), no. 5, 859–887. MR**0519728**, https://doi.org/10.1137/0714058**[13]**William Edmund Milne,*Numerical solution of differential equations*, John Wiley & Sons, Inc., New York; Chapman & Hall, Limited, London, 1953. MR**0068321****[14]**S. P. Nørsett,*Semi-Explicit Runge-Kutta Methods*, Mathematics and Computation, No. 6, University of Trondheim, 1974.**[15]**A. Prothero and A. Robinson,*On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations*, Math. Comp.**28**(1974), 145–162. MR**0331793**, https://doi.org/10.1090/S0025-5718-1974-0331793-2**[16]**H. A. Watts and L. F. Shampine,*𝐴-stable block implicit one-step methods*, Nordisk Tidskr. Informationsbehandling (BIT)**12**(1972), 252–266. MR**0307483****[17]**Jack Williams and Frank de Hoog,*A class of 𝐴-stable advanced multistep methods*, Math. Comp.**28**(1974), 163–177. MR**0356519**, https://doi.org/10.1090/S0025-5718-1974-0356519-8

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05

Retrieve articles in all journals with MSC: 65L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1983-0679440-X

Article copyright:
© Copyright 1983
American Mathematical Society