Computation of Faber series with application to numerical polynomial approximation in the complex plane

Author:
S. W. Ellacott

Journal:
Math. Comp. **40** (1983), 575-587

MSC:
Primary 65D15; Secondary 30B50, 30E10, 41A10

DOI:
https://doi.org/10.1090/S0025-5718-1983-0689474-7

MathSciNet review:
689474

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Kövari and Pommerenke [19], and Elliott [8], have shown that the truncated Faber series gives a polynomial approximation which (for practical values of the degree of the polynomial) is very close to the best approximation. In this paper we discuss efficient Fast Fourier Transform (FFT) and recursive methods for the computation of Faber polynomials, and point out that the FFT method described by Geddes [13], for computing Chebyshev coefficients can be generalized to compute Faber coefficients.

We also give a corrected bound for the norm of the Faber projection (that given in Elliott [8], being unfortunately slightly in error) and very briefly discuss a possible extension of the method to the case when the mapping function, which is required to compute the Faber series, is not known explicitly.

**[1]**M. Abramowitz & I. A. Stegun,*Handbook of Mathematical Functions*(9th Dover Printing based on the U. S. Government Printing Office edition), Dover, New York, 1972.**[2]**I. Barrodale, L. M. Delves, and J. C. Mason,*Linear Chebyshev approximation of complex-valued functions*, Math. Comp.**32**(1978), no. 143, 853–863. MR**0483298**, https://doi.org/10.1090/S0025-5718-1978-0483298-X**[3]**H.-P. Blatt,*A general Remes algorithm in real or complex normed linear spaces*, Multivariate approximation (Sympos., Univ. Durham, Durham, 1977) Academic Press, London-New York, 1978, pp. 145–153. MR**525872****[4]**E. W. Cheney and K. H. Price,*Minimal projections*, Approximation Theory (Proc. Sympos., Lancaster, 1969) Academic Press, London, 1970, pp. 261–289. MR**0265842****[5]**J. H. Curtiss,*Faber polynomials and the Faber series*, Amer. Math. Monthly**78**(1971), 577–596. MR**0293104**, https://doi.org/10.2307/2316567**[6]**S. Ellacott and Jack Williams,*Linear Chebyshev approximation in the complex plane using Lawson’s algorithm*, Math. Comput.**30**(1976), no. 133, 35–44. MR**0400652**, https://doi.org/10.1090/S0025-5718-1976-0400652-0**[7]**S. W. Ellacott,*A technique for approximate conformal mapping*, Multivariate approximation (Sympos., Univ. Durham, Durham, 1977) Academic Press, London-New York, 1978, pp. 301–314. MR**525882****[8]**G. H. Elliott,*The Construction of Chebyshev Approximations in the Complex Plane*, Ph.D. Thesis, Faculty of Science (Mathematics), University of London, 1978.**[9]**L. Fox and I. B. Parker,*Chebyshev polynomials in numerical analysis*, Oxford University Press, London-New York-Toronto, Ont., 1968. MR**0228149****[10]**Dieter Gaier,*Konstruktive Methoden der konformen Abbildung*, Springer Tracts in Natural Philosophy, Vol. 3, Springer-Verlag, Berlin, 1964 (German). MR**0199360****[11]**Dieter Gaier,*Vorlesungen über Approximation im Komplexen*, Birkhäuser Verlag, Basel-Boston, Mass., 1980 (German). MR**604011****[12]**K. O. Geddes and J. C. Mason,*Polynomial approximation by projections on the unit circle*, SIAM J. Numer. Anal.**12**(1975), 111–120. MR**0364977**, https://doi.org/10.1137/0712011**[13]**K. O. Geddes,*Near-minimax polynomial approximation in an elliptical region*, SIAM J. Numer. Anal.**15**(1978), no. 6, 1225–1233. MR**512695**, https://doi.org/10.1137/0715083**[14]**K. Glashoff and K. Roleff,*A new method for Chebyshev approximation of complex-valued functions*, Math. Comp.**36**(1981), no. 153, 233–239. MR**595055**, https://doi.org/10.1090/S0025-5718-1981-0595055-4**[15]**E. Grassmann,*Numerical experiments with a method of successive approximation for conformal mapping*, Z. Angew. Math. Phys.**30**(1979), no. 6, 873–884 (English, with German summary). MR**559243**, https://doi.org/10.1007/BF01590486**[16]**Hans-Peter Hoidn,*Osculation methods for the conformal mapping of doubly connected regions*, Z. Angew. Math. Phys.**33**(1982), no. 5, 640–652 (English, with German summary). MR**680932**, https://doi.org/10.1007/BF00944947**[17]**Martin H. Gutknecht,*Ein Abstiegsverfahren für nicht-diskrete Tschebyscheff-Approximationsprobleme*, Numerische Methoden der Approximationstheorie, Band 4 (Meeting, Math. Forschungsinst., Oberwolfach, 1977) Internat. Schriftenreihe Numer. Math., vol. 42, Birkhäuser, Basel-Boston, Mass., 1978, pp. 154–171 (German, with English summary). MR**527102****[18]**Martin H. Gutknecht and Lloyd N. Trefethen,*Real polynomial Chebyshev approximation by the Carathéodory-Fejér method*, SIAM J. Numer. Anal.**19**(1982), no. 2, 358–371. MR**650056**, https://doi.org/10.1137/0719022**[19]**T. Kövari and Ch. Pommerenke,*On Faber polynomials and Faber expansions*, Math. Z.**99**(1967), 193–206. MR**0227429**, https://doi.org/10.1007/BF01112450**[20]**D. Levin, N. Papamichael, and A. Sideridis,*The Bergman kernel method for the numerical conformal mapping of simply connected domains*, J. Inst. Math. Appl.**22**(1978), no. 2, 171–187. MR**509155****[21]**J. N. Lyness & G. Sande, "Algorithm 413: Evaluation of normalised Taylor coefficients of an analytic function,"*Comm. ACM*, v. 14, 1971, pp. 669-675.**[22]**A. I. Markushevich,*Theory of Functions of a Complex Variable*, Translated and edited by R. A. Silverman (three volumes in one), Chelsea, New York, 1977.**[23]**L. M. Nepritvorennaja,*Construction of Faber polynomials for an arbitrary polygon*, Bul. Akad. Štiince RSS Moldoven.**3**(1973), 80–83, 93 (Russian). MR**0333136****[24]**J. C. Mason,*Orthogonal polynomial approximation methods in numerical analysis*, Approximation Theory (Proc. Sympos., Lancaster, 1969) Academic Press, London, 1970, pp. 7–33. MR**0270034****[25]**Gerhard Opfer,*An algorithm for the construction of best approximations based on Kolmogorov’s criterion*, J. Approx. Theory**23**(1978), no. 4, 299–317 (English, with German summary). MR**509560**, https://doi.org/10.1016/0021-9045(78)90082-5**[25]**Gerhard Opfer,*An algorithm for the construction of best approximations based on Kolmogorov’s criterion*, J. Approx. Theory**23**(1978), no. 4, 299–317 (English, with German summary). MR**509560**, https://doi.org/10.1016/0021-9045(78)90082-5**[26]**Christian Pommerenke,*Konforme Abbildung und Fekete-Punkte*, Math. Z.**89**(1965), 422–438 (German). MR**0181740**, https://doi.org/10.1007/BF01112271**[27]**J. Radon, "Über die Randwertaufgaben beim logarithmischen Potential,"*Sitz.-Ber. Akad. Wiss., Wien. Math.-naturw. Kl.*, Abt. IIa, v. 128, 1919, pp. 1123-1167.**[28]**R. L. Streit & A. H. Nutall,*Linear Chebyshev Complex Function Approximation*, NUSC report 6403, Naval Underwater Systems Center, New London, Conn., 1981.**[29]**Lloyd N. Trefethen,*Numerical computation of the Schwarz-Christoffel transformation*, SIAM J. Sci. Statist. Comput.**1**(1980), no. 1, 82–102. MR**572542**, https://doi.org/10.1137/0901004**[30]**Lloyd N. Trefethen,*Computer application of the Schwarz-Christoffel transformation*, E. B. Christoffel (Aachen/Monschau, 1979) Birkhäuser, Basel-Boston, Mass., 1981, pp. 263–274. MR**661071****[31]**Lloyd N. Trefethen,*Near-circularity of the curve in complex Chebyshev approximation*, J. Approx. Theory**31**(1981), no. 4, 344–367. MR**628517**, https://doi.org/10.1016/0021-9045(81)90102-7

Retrieve articles in *Mathematics of Computation*
with MSC:
65D15,
30B50,
30E10,
41A10

Retrieve articles in all journals with MSC: 65D15, 30B50, 30E10, 41A10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1983-0689474-7

Keywords:
Faber series,
near best approximation

Article copyright:
© Copyright 1983
American Mathematical Society