Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Twenty-fourth power residue difference sets


Author: Ronald J. Evans
Journal: Math. Comp. 40 (1983), 677-683
MSC: Primary 12C20; Secondary 05B10, 10G05, 10L05
DOI: https://doi.org/10.1090/S0025-5718-1983-0689481-4
MathSciNet review: 689481
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that if p is a $ {\text{prime}} \equiv 1\;\pmod 24$ such that either 2 is a cubic residue or 3 is a quartic residue $ \pmod p$, then the twenty-fourth powers $ \pmod p$ do not form a difference set or a modified difference set.


References [Enhancements On Off] (What's this?)

  • [1] L. D. Baumert, Cyclic Difference Sets, Lecture Notes in Math., vol. 182, Springer-Verlag, Berlin, 1971. MR 0282863 (44:97)
  • [2] L. D. Baumert & H. Fredericksen, "The cyclotomic numbers of order eighteen with applications to difference sets," Math. Comp., v. 21, 1967, pp. 204-219. MR 0223322 (36:6370)
  • [3] B. C. Berndt & R. J. Evans, "Sums of Gauss, Jacobi, and Jacobsthal," J. Number Theory, v. 11, 1979, pp. 349-398. MR 544263 (81j:10054)
  • [4] S. Chowla, "A property of biquadratic residues," Proc. Nat. Acad. Sci. India Sect. A, v. 14, 1944, pp. 45-46. MR 0014119 (7:243f)
  • [5] R. J. Evans, "Bioctic Gauss sums and sixteenth power residue difference sets," Acta Arith., v. 38, 1980, pp. 37-46. MR 574123 (81h:10004)
  • [6] R. J. Evans, "Table of cyclotomic numbers of order twenty-four," Math. Comp., v. 35, 1980, pp. 1036-1038; UMT file 12[9.10], 98 pp.
  • [7] E. Lehmer, "On residue difference sets," Canad. J. Math., v. 5, 1953, pp. 425-432. MR 0056007 (15:10d)
  • [8] H. B. Mann, Addition Theorems, Wiley, New York, 1965. MR 0181626 (31:5854)
  • [9] J. B. Muskat, "The cyclotomic numbers of order fourteen," Acta Arith., v. 11, 1966, pp. 263-279. MR 0193081 (33:1302)
  • [10] J. B. Muskat & A. L. Whiteman, "The cyclotomic numbers of order twenty," Acta Arith., v. 17, 1970, pp. 185-216. MR 0268151 (42:3050)
  • [11] T. Storer, Cyclotomy and Difference Sets, Markham, Chicago, Ill., 1967. MR 0217033 (36:128)
  • [12] A. L. Whiteman, "The cyclotomic numbers of order sixteen," Trans. Amer. Math. Soc., v. 86, 1957, pp. 401-413. MR 0092807 (19:1160h)
  • [13] A. L. Whiteman, The Cyclotomic Numbers of Order Ten, Proc. Sympos. Appl. Math., vol. 10, Amer. Math. Soc., Providence, R.I., 1960, pp. 95-111. MR 0113851 (22:4682)
  • [14] A. L. Whiteman, "The cyclotomic numbers of order twelve," Acta Arith., v. 6, 1960, pp. 53-76. MR 0118709 (22:9480)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 12C20, 05B10, 10G05, 10L05

Retrieve articles in all journals with MSC: 12C20, 05B10, 10G05, 10L05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1983-0689481-4
Keywords: Power residue difference sets, cyclotomic numbers, Gauss and Jacobi sums
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society