Twentyfourth power residue difference sets
Author:
Ronald J. Evans
Journal:
Math. Comp. 40 (1983), 677683
MSC:
Primary 12C20; Secondary 05B10, 10G05, 10L05
MathSciNet review:
689481
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: It is proved that if p is a such that either 2 is a cubic residue or 3 is a quartic residue , then the twentyfourth powers do not form a difference set or a modified difference set.
 [1]
Leonard
D. Baumert, Cyclic difference sets, Lecture Notes in
Mathematics, Vol. 182, SpringerVerlag, BerlinNew York, 1971. MR 0282863
(44 #97)
 [2]
L.
D. Baumert and H.
Fredricksen, The cyclotomic numbers of order
eighteen with applications to difference sets, Math. Comp. 21 (1967), 204–219. MR 0223322
(36 #6370), http://dx.doi.org/10.1090/S00255718196702233225
 [3]
Bruce
C. Berndt and Ronald
J. Evans, Sums of Gauss, Jacobi, and Jacobsthal, J. Number
Theory 11 (1979), no. 3, S. Chowla Anniversary Issue,
349–398. MR
544263 (81j:10054), http://dx.doi.org/10.1016/0022314X(79)900088
 [4]
S.
Chowla, A property of biquadratic residues, Proc. Nat. Acad.
Sci. India. Sect. A. 14 (1944), 45–46. MR 0014119
(7,243f)
 [5]
Ronald
J. Evans, Bioctic Gauss sums and sixteenth power residue difference
sets, Acta Arith. 38 (1980/81), no. 1,
37–46. MR
574123 (81h:10004)
 [6]
R. J. Evans, "Table of cyclotomic numbers of order twentyfour," Math. Comp., v. 35, 1980, pp. 10361038; UMT file 12[9.10], 98 pp.
 [7]
Emma
Lehmer, On residue difference sets, Canadian J. Math.
5 (1953), 425–432. MR 0056007
(15,10d)
 [8]
Henry
B. Mann, Addition theorems: The addition theorems of group theory
and number theory, Interscience Publishers John Wiley & Sons New
YorkLondonSydney, 1965. MR 0181626
(31 #5854)
 [9]
J.
B. Muskat, The cyclotomic numbers of order fourteen, Acta
Arith. 11 (1965/1966), 263–279. MR 0193081
(33 #1302)
 [10]
Joseph
B. Muskat and Albert
L. Whiteman, The cyclotomic numbers of order twenty, Acta
Arith. 17 (1970), 185–216. MR 0268151
(42 #3050)
 [11]
Thomas
Storer, Cyclotomy and difference sets, Lectures in Advanced
Mathematics, No. 2, Markham Publishing Co., Chicago, Ill., 1967. MR 0217033
(36 #128)
 [12]
Albert
Leon Whiteman, The cyclotomic numbers of order
sixteen, Trans. Amer. Math. Soc. 86 (1957), 401–413. MR 0092807
(19,1160h), http://dx.doi.org/10.1090/S00029947195700928077
 [13]
Albert
Leon Whiteman, The cyclotomic numbers of order ten, Proc.
Sympos. Appl. Math., Vol. 10, American Mathematical Society, Providence,
R.I., 1960, pp. 95–111. MR 0113851
(22 #4682)
 [14]
A.
L. Whiteman, The cyclotomic numbers of order twelve, Acta
Arith. 6 (1960), 53–76. MR 0118709
(22 #9480)
 [1]
 L. D. Baumert, Cyclic Difference Sets, Lecture Notes in Math., vol. 182, SpringerVerlag, Berlin, 1971. MR 0282863 (44:97)
 [2]
 L. D. Baumert & H. Fredericksen, "The cyclotomic numbers of order eighteen with applications to difference sets," Math. Comp., v. 21, 1967, pp. 204219. MR 0223322 (36:6370)
 [3]
 B. C. Berndt & R. J. Evans, "Sums of Gauss, Jacobi, and Jacobsthal," J. Number Theory, v. 11, 1979, pp. 349398. MR 544263 (81j:10054)
 [4]
 S. Chowla, "A property of biquadratic residues," Proc. Nat. Acad. Sci. India Sect. A, v. 14, 1944, pp. 4546. MR 0014119 (7:243f)
 [5]
 R. J. Evans, "Bioctic Gauss sums and sixteenth power residue difference sets," Acta Arith., v. 38, 1980, pp. 3746. MR 574123 (81h:10004)
 [6]
 R. J. Evans, "Table of cyclotomic numbers of order twentyfour," Math. Comp., v. 35, 1980, pp. 10361038; UMT file 12[9.10], 98 pp.
 [7]
 E. Lehmer, "On residue difference sets," Canad. J. Math., v. 5, 1953, pp. 425432. MR 0056007 (15:10d)
 [8]
 H. B. Mann, Addition Theorems, Wiley, New York, 1965. MR 0181626 (31:5854)
 [9]
 J. B. Muskat, "The cyclotomic numbers of order fourteen," Acta Arith., v. 11, 1966, pp. 263279. MR 0193081 (33:1302)
 [10]
 J. B. Muskat & A. L. Whiteman, "The cyclotomic numbers of order twenty," Acta Arith., v. 17, 1970, pp. 185216. MR 0268151 (42:3050)
 [11]
 T. Storer, Cyclotomy and Difference Sets, Markham, Chicago, Ill., 1967. MR 0217033 (36:128)
 [12]
 A. L. Whiteman, "The cyclotomic numbers of order sixteen," Trans. Amer. Math. Soc., v. 86, 1957, pp. 401413. MR 0092807 (19:1160h)
 [13]
 A. L. Whiteman, The Cyclotomic Numbers of Order Ten, Proc. Sympos. Appl. Math., vol. 10, Amer. Math. Soc., Providence, R.I., 1960, pp. 95111. MR 0113851 (22:4682)
 [14]
 A. L. Whiteman, "The cyclotomic numbers of order twelve," Acta Arith., v. 6, 1960, pp. 5376. MR 0118709 (22:9480)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
12C20,
05B10,
10G05,
10L05
Retrieve articles in all journals
with MSC:
12C20,
05B10,
10G05,
10L05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198306894814
PII:
S 00255718(1983)06894814
Keywords:
Power residue difference sets,
cyclotomic numbers,
Gauss and Jacobi sums
Article copyright:
© Copyright 1983
American Mathematical Society
