On the simplified hybrid-combined method

Authors:
Zi Cai Li and Guo Ping Liang

Journal:
Math. Comp. **41** (1983), 13-25

MSC:
Primary 65N30

DOI:
https://doi.org/10.1090/S0025-5718-1983-0701621-7

MathSciNet review:
701621

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In order to solve the boundary value problems of elliptic equations, especially with singularities and unbounded domains, the simplified hybrid-combined method, which is equivalent to the coupling method of Zienkiewicz et al. [15], is presented. This is a combination of the Ritz-Galerkin and the finite element methods. Its optimal error estimates are proved in this paper, and the solution strategy of its algebraic equation system is discussed.

**[1]**Stefan Bergman,*Integral operators in the theory of linear partial differential equations*, Second revised printing. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 23, Springer-Verlag New York Inc., New York, 1969. MR**0239239****[2]**Ivo Babuška and A. K. Aziz,*Survey lectures on the mathematical foundations of the finite element method*, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 1–359. With the collaboration of G. Fix and R. B. Kellogg. MR**0421106****[3]**Philippe G. Ciarlet,*The finite element method for elliptic problems*, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR**0520174****[4]**S. C. Eisenstat,*On the Rate of Convergence of the Bergman-Vekua Method for the Numerical Solution of Elliptic Boundary Value Problems*, Research Report No. 72-2, Department of Computer Science, Yale University, 1972.**[5]**George M. Fix,*Hybrid finite element methods*, SIAM Rev.**18**(1976), no. 3, 460–484. MR**0416066**, https://doi.org/10.1137/1018077**[6]**Claes Johnson and J.-Claude Nédélec,*On the coupling of boundary integral and finite element methods*, Math. Comp.**35**(1980), no. 152, 1063–1079. MR**583487**, https://doi.org/10.1090/S0025-5718-1980-0583487-9**[7]**Zi Cai Li and Guo Ping Liang,*On Ritz-Galerkin F.E.M. combined method of solving the boundary value problems of elliptic equation*, Sci. Sinica**24**(1981), no. 11, 1497–1508. MR**655947****[8]**J.-L. Lions and E. Magenes,*Problèmes aux limites non homogènes et applications. Vol. 1*, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). MR**0247243****[9]**P.-A. Raviart and J. M. Thomas,*Primal hybrid finite element methods for 2nd order elliptic equations*, Math. Comp.**31**(1977), no. 138, 391–413. MR**0431752**, https://doi.org/10.1090/S0025-5718-1977-0431752-8**[10]**S. L. Sobolev,*Applications of Functional Analysis in Mathematical Physics*, Transl. Math. Monos., vol. 7, Amer. Math. Soc., Providence, R.I., 1963.**[11]**Gilbert Strang and George J. Fix,*An analysis of the finite element method*, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation. MR**0443377****[12]**A. N. Tikhonov and A. A. Samarskii,*Equations of mathematical physics*, Translated by A. R. M. Robson and P. Basu; translation edited by D. M. Brink. A Pergamon Press Book, The Macmillan Co., New York, 1963. MR**0165209****[13]**P. Tong, T. H. H. Pian & S. J. Lasry, "A hybrid element approach to crack problems in plane elasticity,"*Internat. J. Numer. Methods Engrg.*, v. 7, 1973, pp. 297-308.**[14]**I. N. Vekua,*New Method for Solving Elliptic Equations*, North-Holland, Amsterdam, 1967.**[15]**O. C. Zienkiewicz, D. W. Kelly, and P. Bettess,*The coupling of the finite element method and boundary solution procedures*, Internat. J. Numer. Methods Engrg.**11**(1977), no. 2, 355–375. MR**0451784**, https://doi.org/10.1002/nme.1620110210

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30

Retrieve articles in all journals with MSC: 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1983-0701621-7

Article copyright:
© Copyright 1983
American Mathematical Society