On the simplified hybrid-combined method

Authors:
Zi Cai Li and Guo Ping Liang

Journal:
Math. Comp. **41** (1983), 13-25

MSC:
Primary 65N30

DOI:
https://doi.org/10.1090/S0025-5718-1983-0701621-7

MathSciNet review:
701621

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In order to solve the boundary value problems of elliptic equations, especially with singularities and unbounded domains, the simplified hybrid-combined method, which is equivalent to the coupling method of Zienkiewicz et al. [15], is presented. This is a combination of the Ritz-Galerkin and the finite element methods. Its optimal error estimates are proved in this paper, and the solution strategy of its algebraic equation system is discussed.

**[1]**S. Bergman,*Integral Operations in the Theory of Linear Partial Differential Equations*, Springer-Verlag, Berlin and New York, 1969. MR**0239239 (39:596)****[2]**I. Babuška & A. K. Aziz, "Survey lectures on the mathematical foundations of the finite element method," in*The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations*(A. K. Aziz, Ed.), Academic Press, New York and London, 1972, pp. 3-359. MR**0421106 (54:9111)****[3]**P. G. Ciarlet,*The Finite Element Method for Elliptic Problems*, North-Holland, Amsterdam, 1978. MR**0520174 (58:25001)****[4]**S. C. Eisenstat,*On the Rate of Convergence of the Bergman-Vekua Method for the Numerical Solution of Elliptic Boundary Value Problems*, Research Report No. 72-2, Department of Computer Science, Yale University, 1972.**[5]**G. J. Fix, "Hybrid element method,"*SIAM Rev.*, v. 18, 1976, pp. 460-484. MR**0416066 (54:4142)****[6]**C. Johnson & C. Nedelec, "On the coupling of boundary integral and finite element methods,"*Math. Comp.*, v. 35, 1980, pp. 1063-1079. MR**583487 (82c:65072)****[7]**Z. C. Li & G. P. Liang, "On Ritz-Galerkin-F.E.M. combined method of solving the boundary value problems of elliptic equations,"*Sci. Sinica*, v. 24, 1981, pp. 1497-1508. MR**655947 (83d:65293)****[8]**J. L. Lions & E. Magènes,*Problèmes aux Limites non Homogènes et Applications*, Vol. 1, Travaux et Recherches Mathematiques, no. 17, Dunod, Paris, 1968. MR**0247243 (40:512)****[9]**P. A. Raviart & J. M. Thoms, "Primal hybrid finite element method for 2nd order elliptic equations,"*Math. Comp.*, v. 31, 1977, pp. 391-413. MR**0431752 (55:4747)****[10]**S. L. Sobolev,*Applications of Functional Analysis in Mathematical Physics*, Transl. Math. Monos., vol. 7, Amer. Math. Soc., Providence, R.I., 1963.**[11]**G. Strang & G. J. Fix,*An Analysis of the Finite Element Method*, Prentice-Hall, Englewood Cliffs, N.J., 1973. MR**0443377 (56:1747)****[12]**A. N. Tikhonov & A. A. Samarskii,*Equations of Mathematical Physics*(Transl. by A. P. N. Robson & P. Basu), Macmillan, New York, 1973. MR**0165209 (29:2498)****[13]**P. Tong, T. H. H. Pian & S. J. Lasry, "A hybrid element approach to crack problems in plane elasticity,"*Internat. J. Numer. Methods Engrg.*, v. 7, 1973, pp. 297-308.**[14]**I. N. Vekua,*New Method for Solving Elliptic Equations*, North-Holland, Amsterdam, 1967.**[15]**O. C. Zienkiewicz, D. W. Kelly & P. Bettess, "The coupling of the finite element method and boundary solution procedures,"*Internat. J. Numer. Methods Engrg.*, v. 11, 1977, pp. 355-375. MR**0451784 (56:10066)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30

Retrieve articles in all journals with MSC: 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1983-0701621-7

Article copyright:
© Copyright 1983
American Mathematical Society